Assignment 2: Expressive Wearable – Imra Ali (3187224)


The “Do Not Disturb Armband” helps you to stay productive without being disturbed by external sources. The wearable is wrapped around your bicep and is controlled by a snap button. When the person is free, the embedded lights animate into a rainbow. When the person is busy, the embedded lights animate into red flashes. The busy mode is activated by attaching the snap button. The free mode is activated when the snap button is detached. When wearing this device, the approaching person can easily tell whether they are free or busy. Based on what light is on, the person will instantly know what actions to take. The wearables should be worn in the direction of oncoming traffic.


COVID has changed everyone’s life. Following government protocols mean staying at home as much as possible. People are not used to being around their housemates 24/7. It is hard to focus when there are so many people around you. The simple question of “Are you busy?” easily distracts a person. A person may feel guilty by saying no or begin to wonder what is wrong. This led me to the conclusion of building the “Do Not Disturb Armband”. I believe the bicep area is the perfect place to wear this device. The flashing light is right below the person’s head so the approaching person cannot miss it. I believe the colors I chose perfectly match the different modes. There is a universal understanding that rainbows deliver a welcoming feeling while red flashes deliver a stay away feeling. At the end of the day, when a person stays focus they can finish their task quickly while simultaneously not procrastinating from distractions.


Before beginning to build my wearable, I sketched out the prototype.


Once I was confident with my prototyping sketch, I collected materials.


After, I begin coding the different modes. In my coding process, I preferred creating functions because I could easily organize and change the variables. There were many rounds of iterations and testing before ending up on this code.


When sewing the CPX and snap button I was extremely careful the conductive thread did not touch each other. Continuously checked with conductive fabric that the circuit was working.

a2-diagramimplem a2-outsidecircuit


Final Product

a2-imbusy a2-imfree

Reflections & Next Steps

Overall, I am extremely proud of what I created. The continuous trial and error allowed me to push through, learn, and innovate. The experimental process on the Make Code platform allowed me to understand the software side of e-textile.

Originally, I wanted to add a siren sound if someone talked while the individual was busy. I decided not to implement this idea because it would distract the individual wearing the armband. 

My next step for this project would be to play around with the lighting. I would add a screen that can be customized by writing the specific task being done. Also, I would love to play around with the placement of the wearable. I could make it a clip so it is accessible and can be used anywhere on the body. 


Cummins, E. (2020, July 15). Shirking from home. Retrieved from

Powers, J. (2020, August 07). Dealing with distraction during the covid-19 pandemic. Retrieved from

Related Works

Apple Inc. (2021, January 05). Use do not disturb on your iphone, ipad, and ipod touch. Retrieved from

The Samsung Group. (n.d.). Use silent modes on your Samsung smart watch. Retrieved from

Transfusion Media. (2020, November 22). StayFocusd. Retrieved from

Expressive Wearable – Zoë Roiati-Antonucci “Touched”


Concept & Objective 

With Valentine’s Day around the corner, I decided to created a wearable that represents the feeling of love and/or gratitude. I made a little heart shaped necklace that sits above your heart. To activate it, you must wear a finger piece and place your hand over your heart. It lights up when you show that you feel moved or “touched”.


img_7212 img_7213


First I put together the circuit.


The conductive fabric connects to pin A3 and GND.e7f302c2-949d-4a9d-8f42-a436aa1b2e29

I then traced out a case made out of cotton in the shape of a heart.


I then sandwiched the two heart shape pieces onto the circuit and sewed them together.


Finally traced out the spots where I needed to cut the cotton out so that the conductive fabric could be visible.


The finger piece is made out of of the same cotton and conductive thread.


img_7209 img_7208

Parts List

  • Felt
  • Cotton
  • Conductive thread
  • Thread
  • Circuit Playground Express
  • Conductive Fabric


The main thing I would like to continue working on for this project is hooking it up to a portable battery as opposed to having it plugged into my computer, as well as making it a bit more portable itself and not as bulky.

Also, next time I make a ring, I should instead use an elastic fabric that hugs the finger because the cotton just slips off.


My greatest inspiration for this piece came from “Iron Man,” the first movie of it’s series. Where Tony Stark’s partner Pepper, places his spare life saving device is a case surrounded by the words “Proof That Tony Stark Has A Heart.”


Favreua, J. (Director.) (2008). Iron Man [Film]. Paramount Pictures.


Assignment 2 – Valeria Suing (The Hangover Shirt)

The Hangover Shirt


Concept & Objective 

Hangovers are rough, and if you have ever experienced one, you know the feeling of waking up full of regrets, with a major headache and an increased sensibility to loud noises.

To help you get through it, I present to you The Hangover Shirt. You can activate it by pressing a button and lights will get activated from loud noises. So instead of yelling everyone to be quiet, let your passive-aggressive shirt tell them!


I started with a prototype of how the shirt will look like.


To test the circuit before sewing I used the alligator clips and from trial and error, I found a sound level that would react to only loud noises.


Since the wearable is meant to communicate with others, I decided to add another light to make it more noticeable.


For the code, I decided to use digital values of HIGH and LOW for the LEDs. This allowed the lights to be brighter and shut down completely when the environment is quiet.


Here’s a video of how I tested the lights using a YouTube video of Steve Carrell yelling: testing-lights-video

The Sewing Process:

img_1113-1 img_1121 img_1119







I decided to glue the paper over the lights to diffuse them a little bit.


With the help of a plotter, I got the lettering in vinyl.

img_1132 img_1129

Parts List

  • 2 LED Lights
  • Conductive Thread
  • 2 10k resistors
  • CPX micro-controller
  • Micro USB cable
  • T-shirt
  • Paper cut into a circle (I used an Aeropress filter)
  • Glue gun
  • Vinyl for lettering


Circuit Diagram


Final Product

img_8577 img_8571

For a quick video of how it works: img_8567

Reflection & Next Steps

Overall I had a lot of fun doing this project. My sewing skills definitely need to improve, this is where I had the most trouble. But hopefully, I’ll keep practicing and getting better.

I was debating whether to use lettering for my shirt or not. I was worried that the use of a phrase will weaken the communicative powers of the lights. In the end, I decided to use it since the lights and the lettering complement each other and it allows the t-shirt to speak on its own with no verbal explanation.

If I could revisit this project again I would maybe a switch rather than a button since it was a little uncomfortable to keep the button pressed for the lights to work. I would also sew the lights in a more creative way maybe adding more LEDs to form a circle. I think I would also add a protective layer for the conductive thread, I had to wear a shirt underneath so there won’t be any contact with the skin.

Of course loud sensitivity is not only for hangovers, this t-shirt can also apply for migraines or just for keeping a quiet environment to allow rest or even meditation.

Resources & Related Works

Resources for the prototype image:

Blank t-shirt template front and back. (2016, November 21). VectorStock.

Related Works:

VersaMe has a wearable for kids who are starting to speak and it acts as a word counter. This is related to my work since it interacts with sound as an input from the environment.

VersaMe. (2016, October 18). VersaMe Launches the Starling, the World’s First Word Counter for Babies. PS Newswire.

Another wearable that I found that uses sound as input is this tuner for your wear watch. It allows musicians to tune their instruments and is easy to carry around.

Summerson, C. (2015, January 28). atHandTuner Is A Wearable Instrument Tuner For Your Wear Watch, And It Works Really Well. Android Police.

A2: Expressive Wearable – Ivy Sun (3183268)


Mine is called “WatchGhost”, which could refer to a watchdog, and it seems kind of Halloween vibe. Basically, it is a wearable ghost that uses an external switch to create different vibes/light colours, expressing different moods. It is a digital badge embedded in a sweater. When I wear it normally, it is in its default state. The ghost’s eyes and mouth are light green, indicating that I am chill and nothing happened. But if I feel irritable or someone is too close to me, I will enable the external switch, which is embedded in the bottom left inside of the sweater, so that the lil ghost flashes a warning red light for 5 seconds. The red little ghost can be seen as an expression of my attitude and a visualization of my “negative” emotions, also a way of communicating with the outside/others. As long as the demon red light is not triggered, the ghost is always a friendly green ghost. Besides, the little ghost could also be regarded as my electronic wearable pet, and I can bring it anywhere. From another perspective, the colour-mood is watchghost’s own expression; it becomes angry only when I oppress it or pinch it.


In fact, this project can be said to be a self-protection system for a lonely person during the pandemic, and it is also a process of pleasure. What I want to convey is the concept of visual emotion expression and portable pets. When the wearer is alone, I hope the user can entertain herself, knowing that she is not alone. Moreover, when the wearer is outdoors, red light sources can be used to express rejection. This will be a relief or comfort to a sensitive and isolated person like me.


Ivy Sun#

At first, I had other two ideas about wearable badges, one is to express a crush on someone and the other is to smile. But later I decided to build a more personalized one, that is more related to my current state.

Ivy Sun#

Ivy Sun#

Ivy Sun#

Ivy Sun# pre-test#1

Ivy Sun#pre-test#2

After ideation, I modified the code we learn from previous lectures and started by setting up the initial connection with alligator clips and then adding conductive fabric pieces, which went smoothly! Then, I sketched some circuit diagrams and the embedded position/order of each component.

Ivy Sun#

Also, I tried to use different materials to diffuse light and finally decided to use a dry wipe, which is nonwoven fabrics.

Ivy Sun#

Ivy Sun#

Prototyping… Sewing…

Ivy Sun#




Final Project Images

Ivy Sun#

Ivy Sun#

Ivy Sun#

WatchGhost demo#6

WatchGhost demo#7

Parts List

  • Circuit Playground Express
  • USB (A) to Micro (B) Cable
  • Conductive Thread
  • Nonwoven Fabric
  • Normal Thread
  • Plastic
  • Felt
  • Sweater
  • Other Materials (Alligator clips, Tape, Sewing needles, Scissors, Glue, Tissue, Dry wipe)

Ivy Sun#

Circuit Diagram

Ivy Sun#

Reflections & Next Steps

The ideation part is essential. If the ideas could be expanded with multiple solutions, the best one would be correspondingly found and the rest practice process will be much smoother. However, it is not enough just thinking, we will still encounter many troubles in actual production, such as the inability to accurately determine the position when sewing components. Therefore, it needs to be marked in advance every single time, which could save a lot of time. I so regret not doing that this time, because I felt I could skip that step. Although the recording process seems a little cumbersome, it is worth it. I am sure that I will make the process video into a vlog as a souvenir. Furthermore, as a raw/immature artist, sometimes I am just not that confident to express some personal stuff and deep topic, yet a project letting us explore ourselves gives me the outset. The entire process is definitely enjoyable, and I believe such kind of exploration will be continuous. Regarding the expectation of the course, I hope to keep exploring various interesting things, integrating sounds, lights, electronics into creative wearable forms. Last but not least, some keywords mentioned in lectures need to be further explored as well, and there are some related fields such as responsive environment, tangible media, etc., which can be considered as the direction of my future studies.

Resources & Related Works

Iaconesi, S. (2010). Wearing Emotions: Physical Representation and Visualization of Human Emotions Using Wearable Technologies. 2010 14th International Conference Information Visualisation, 1-7. doi:10.1109/iv.2010.38

Signoretta, E. (2020, August 21). Wearable Electronic Badge. Retrieved February 12, 2021, from

Vega Edge. (2019, March 01). Retrieved February 12, 2021, from

Expressive Wearable: Joyce Yu



The concept I have come up with is the expression of anxiety and feeling overwhelmed caused by loud surrounding noise through an interchangeable circuit, which in this case is a scarf. When I was in high school a few years ago, I encountered many people who had a hard time dealing with stress from loud noises of the environment their in. I also found that they had a hard time expressing this issue and letting people be aware of this problem which is why I wanted to create a wearable that would alert others about the noise volume.


My objective and goal of this assignment was to program the circuit to graph sound when the switch is on. When I first tested it out and experimented with different codes, I found it very interesting how the number of LED lights on the CPX correlated to the sounds of its surroundings. So, I thought that this is a great way to bring light on the impact noise has on someone’s mood in a way that is convenient for the wearer. I have also incorporated pieces of Velcro which makes it simple to take on and off- an important element when looking at the practical factors of wearable technology. I also put a lot of thought into creating something that is interchangeable because certain items of clothing may not be able to be worn annually.


screen-shot-2021-02-12-at-5-49-14-am screen-shot-2021-02-12-at-5-49-46-am

  • CPX
  • Conductive Thread
  • conductive Fabric
  • Needle
  • Thread
  • Felt
  • Mini-USB
  • Velcro
  • Scarf



After coding the circuit to turn on to react to surrounding noise, I transferred the file onto the CPX USB file and tested it out with alligator clips. Then, I threaded conducting thread into a needle and wrapped it around the A3 pin (Power) and sewed it into the felt fabric following the circuit diagram.



Additionally, I cut two small rectangles and two narrow strips of conducting fabric and sewed that onto the top of the CPX with one strip vertically. Then, I followed the same process but with the Ground pin but sewed the last narrow strip vertically so that the two pieces slip into each other and stay put without having to physically keep the circuit closed. After, I took normal thread and sewed it along the other pins to secure the CPX onto the felt. Then, I cut the top portion of the whole circuit, folded it, and sewed it along the bottom where the mini-USB would go through with normal thread.


Finally, I cut the remaining pieces of felt around the circuit once more and placed Velcro around it. The opposite pieces of the Velcro were then pressed onto the circuit and put on the scarf.

Circuit Diagrams:




Final Photo:


*Scarf with circuit off


*Scar with circuit on and with loud music playing

Reflection and next step:

Overall, this assignment was very fun and after seeing the end result, I was very satisfied with the outcome because I have never done anything remotely close to coding and working with circuits. In the beginning, I was pretty confused with how to carry out my idea because sometimes troubleshooting did not work but after experimenting many times on the Make Code platform, I was able to successfully make the CPX do what I intended it to do. One thing I hope to do better in the future is getting a better understanding of how to program the circuit into doing more specific things and applying different colours. Finally, I think it looks pretty well put together and I am happy with the idea I came up with because I was able to use past observations to make a wearable that is relevant to many people.


Prior, O. & Yoyo (2021). Digital Switches & Buttons Overview [Online Lecture]. Retrieved from

Assignment 2: Expressive Wearable Khushi Jetley


The wearable that I have created is called showUP. This device is for individuals that suffer from anxiety. The wearable has 2 different modes that show how the person wearing is feeling. As someone who has struggles with anxiety, I know that sometimes it is hard to express yourself when feeling anxious. ShowUP, helps the individuals express anxiety to those around them, without having to tell them physically.

When the person is happy/calm, they can turn on the yellow light by just doing the blue snap fastener. However if the person is feeling anxious, they can do the pink snap fastener and the bracelet will glow in purple colour.


ShowUP, will help anxiety patients get the help that they need. Most of the time, anxiety is ignored as people label it as overthinking, overstressing, nervousness etc. Through this wearable device, not only I intend to make people aware of anxiety disorder and its consequences, but also help normalise the stigma around it.


Idea: This idea started out as an anklet speed tracker. However, I realized that the requirements of the assignments need for the device to be able to express a feeling/emotion. Hence, I thought that I would like to express what I feel a lot, anxiety.

Initial Sketches: I had decided that I wanted to create an accessory for my wearable. I was debating between bracelets, belts and earrings. Bracelet was the best choice for my intended purpose, expressing the state of mind.

After deciding what I wanted to create, the next part was how I am going to make a bracelet that looks fashionable and  job. I mapped out the circuit and the flow and made some sketches of how the final product would look like.

img-0292 img-0291

Circuit: Once I mapped the circuit, I played around with the makecode and tried to make the CPX function as per my needs using alligator clips. After few tries the functionality of the device was perfect.

Designing the Device: Designing and maneuvering the circuit was fairly easy as compared to designing the exterior of the device. I had never worked with texttiles and hence I was a little hard to wrap my head around it and get used to it.



Final Project



Overall I am happy with the outcome of my project. If I were redo it I would make the bracelet a little smaller, and more aesthetically appealing. Additionally, I would like to practice a bit more with the sewing and textiles in general, as I believe, due to inadequacy, I did put too much time in figuring things out.

Additionally, I would like to introduce the showUP, device in various different forms like earrings, necklace, etc. Also, I would like for the product to have various settings indicating levels of anxiety/serenity.


60’S inspired color Changing “Mood” Bracelets. (n.d.). Retrieved February 12, 2021, from

How mood rings work. (n.d.). Retrieved February 12, 2021, from

Assignment 2: Expressive Wearable — Nala Ren


Clutch is a small purse designed to act as a “real-life MSN status” (a term lovingly coined by my boyfriend), displaying three separate colours of LEDs that the user can switch between in order to convey their current mood. By design, green is meant to convey an openness or willingness to talk and socialize, yellow is intended to be “busy” or “talk later”, and red is supposed to mean “leave me alone”, or express when someone is not in the mood for a discussion. Four snap fasteners on the back of the purse set the colour of the LEDs, with the fourth being “neutral” (all lights off). 

I chose green, yellow, and red for the LEDs as they are more or less universally understood, being found in traffic lights, subway stations, and social media statuses. I had originally considered making a smiley face, frowny face, and sad face out of LEDs instead, but after asking my friends’ opinions, they all said that frowny or sad faces would prompt them to ask the wearer what was wrong, rather than the intended “stay away/don’t talk to me” message, so I chose a ring of light to more clearly convey the objective.

(Now I would like to interrupt your regularly scheduled blog post to show you a few photos of the final product, because I AM SO EXCITED)

Ta da!


green-2yellow-2(Okay, back to your regularly scheduled programming)


Many people, including myself, struggle with social communication and how to politely express our current mental status. Clutch is designed to be a simple, elegant way to inform those around you whether you’re down to talk (green), busy (yellow), or want to be left alone (red). I know the assignment was to choose one feeling, but I find I switch between these 3 states constantly, so I wanted to create something that could quickly and easily express the fluctuations in my mood. The gentle ring light also leaves the meaning slightly open to interpretation, which I think is a plus when communicating with strangers especially. I would never want to come off as aggressive or hostile, but neither do I want someone talking to me on the TTC or walking too close behind me at night.

Additionally (and this is just a personal vendetta), I absolutely despise most purses and handbags. This is the unfortunate result of my mother carrying a massive purse wherever she went when I was a child, and immediately getting tired of it and forcing me to hold it for her when we went out. To soothe my hatred of gigantic purses, I wanted to make something small and practical. It has a cross-body strap to protect your posture, and the purse itself is extremely lightweight, while still being able to hold my phone, wallet, keys, and the battery pack with room to spare. 

I also made it fluffy, because, y’know, it’s adorable. I also found that this furry fabric was the most effective for diffusing the LEDs, so it wasn’t a difficult choice. I was debating on whether I should name this purse the Puff ‘n’ Fluff, but I thought that was just a bit too much.


Hold on tight friends, this is going to get a bit dense. So dense, in fact, that I had to create a separate Google Slides document for all of the process work (WordPress just can’t handle it). You can find it here.

In the meantime, here are just a few of the highlights!

Summoning a demon:pxl_20210209_000652989

All the circuits on the front of the bag sewn, moving onto construction:pxl_20210209_061912888

Made a small, removable drawer to protect the USB cord and allow it to be removed when necessary:pxl_20210209_191300632

Nearly done all internal construction:pxl_20210209_192615225

Covered in fur and ready to go:pxl_20210209_235328330

Please refer to the Google Slides for a much more in-depth explanation! There are also videos of the purse in action in the Google Slides.

Parts List

(This list only includes the parts used in the final purse, not products used during testing)

  • Circuit Playground Express
  • LEDs (Green, Yellow, Red)
  • Micro USB to USB Cord
  • Conductive Thread
  • Non-conductive Thread
  • Cardboard
  • Plastic Sheet
  • White Glue
  • Hot Glue
  • Snap Fasteners
  • Felt
  • Furry Fabric
  • Buttons
  • Metal Wire
  • Shoulder Strap
  • Rechargeable Battery Pack

(More) Final Product Images

green-1 red-2

And last but not least, my favorite photo of all time: me staring longingly at BBQ duck.

Reflections & Next Steps

Overall, I’m extremely satisfied with the way this project panned out. This is the first piece of wearable tech I’ve ever made and I’m really proud of it – so much so that I put on makeup and a wig and forced myself and my boyfriend out into the freezing Canadian night in order to get good photos. I fully intend to use this as a real bag (it’s definitely durable enough), and I’m sure my knowledge and skills will only keep increasing from here on out! In terms of things I would have done differently, of course I would have liked to use more permanent materials, but I couldn’t really source faux leather or anything like that during COVID. Maybe once this is all over, I’ll re-make this same bag but more suitable for washing and dropping off of cliffs. During the process, I noticed that the yellow LEDs are consistently dimmer than the other two colours – they do show a lower voltage on the bag, so that’s probably the reason, but I hope to acquire yellow LEDs that are at least on par with the others. I also know that my code is very simple (it is literally ‘forever “digital write [relevant pin] to HIGH”’), and in the future I want to make things that incorporate much more complex and interesting code. I know there is so much I could do, so many settings to play with, and so many new things to experiment on, but I hope for now my extremely time-consuming circuit makes up for how basic the code is! Lastly, I was considering how much easier this project would be with a ring of LEDs where each LED changes colour, but I also think I gained something valuable from sewing that circuit (and isn’t it cute that the little dots move around when you change colours?)


The only resource I used to make this purse was the lectures. All of them. Several times each.

Prior, O. & Yoyo (2021). Basic Circuits & Circuit Demonstration [Online Lecture]. Retrieved from

Prior, O. & Yoyo (2021). MakeCode Introduction [Online Lecture]. Retrieved from

Prior, O. & Yoyo (2021). Inputs & Outputs [Online Lecture]. Retrieved from

Prior, O. & Yoyo (2021). Digital Switches & Buttons Overview [Online Lecture]. Retrieved from

Prior, O. & Yoyo (2021). Adding LEDs [Online Lecture]. Retrieved from

Prior, O. & Yoyo (2021). Light Feedback & Diffusing LEDs [Online Lecture]. Retrieved from


Expressive Wearable – Dancing Belt

Dancing Belt

My expressive wearable is a belt that detects the wearer’s dancing. Reinforcing the benefits of dancing for the human body, the belt measures continuous movements to determine that the wearer is dancing, and rewards them with positive sounds and neopixel lights. When the wearer is still, it encourages them to move with pressing sounds and lights.

Parts List

  • Circuit Playground Express
  • Linen pillowcase (any thick, white fabric would do)
  • Conductive thread
  • Non-conductive thread
  • 2 pieces of conductive fabric
  • Long piece of fabric (I used a pre-existing fabric belt)

Concept & Objective

Happiness + Motion = Dancing. My concept for this wearable was inspired by the experience of dancing with my friends pre-COVID. When we’re out together (as an introvert and someone who’s quite shy), I sometimes forget to just enjoy the moment, have fun, and dance with my friends. This led me to imagining a wearable that would encourage me to, essentially, be happy and have fun!

Therefore, my final concept is a belt that detects the wearer’s ‘dancing’ and encourages continous movement when they are still. With this concept, I aim to promote happiness, movement, and fun for the wearer and to suggest the mental and physical benefits of dance.


1. Brainstorming: I kicked off my brainstorming with a similar exercise to what we did for our Speculative Wearable assignment: by listing various emotions, then the everyday items that we wear. After this, I (initially) decided to create a dance-detecting skirt. (More on this later)

img_61152. Research: Next, I conducted some online research about dancing as a healthy form of movement! 

According to Danceworks, it’s pretty ‘impossible’ to dance and stay in a bad mood, because the act of dancing itself is an exercise. Exercise releases endorphins, which reduces the perception of pain and increases positive self-image in our brains. Therefore, dancing makes us happy. According to Greatist, these are some other benefits of dance:

  • Improves agility and flexibility
  • Improves balance and coordination
  • Improves cardiovascular health
  • Improves muscle tone and strength
  • Maintains and builds bone strength
  • Aids in weight loss or maintenance
  • Improves memory and cognition
  • Improves mood
  • Reduces stress levels
  • Provides an opportunity to socialize
  • Boosts self-esteem
  • Is easily adaptable to meet your needs

    3. Initial Interaction Flow:
     After deciding on my idea, I created a flow map that helped me understand the inputs, outputs, and the overall function of my wearable better.

4. Initial Sketches: Then I made some quick sketches! Here are the initial drawings I created based on my original skirt idea. I intended it to have LEDs sewed along the top that would light up with movement.

5. Idea Shift: After some initial reflection and planning, I decided to change the direction of my project to be a belt instead of a skirt. This would allow for more ease of wearing (rather than having to put on the same skirt each time they go out dancing, the user can wear a belt with anything, anytime) and more inclusivity (it can be worn by anyone who wears pants, skirts, trousers, and more).

6. Inspiration Photos & Initial Sketches: After deciding on a belt, I gathered some inspiration photos to decide how/where to place my CPX. In the end, I decided to place it in the center as it would allow for the most secure hold – and the wearer would be able to see the neopixels easily.

slide-16_9-77. New Sketches & Flow: As outlined in my sketches below, the switch of the belt is activated by putting the belt on. Looping the end of the belt through the belt buckle would make the conductive fabric on opposite sides of the belt touch, activating the switch. (Please zoom in to see the detailed steps regarding input / output and what happens while the wearer is using the wearable.)


8. Circuit Diagram: I created a circuit diagram of how I’ll be sewing the conductive thread (the dotted lines) to connect A1 and GND to the conductive fabric pieces.


9. Putting everything together: I’m terrible at executing hands-on projects, so I spent a lot of time testing out how exactly I should make my wearable. This is the pre-existing fabric belt I used for this project — it was too long for my waist as it was originally a coat belt, so I cut the end of it to fit.

img_5971I fastened the belt around my pants and held the CPX at the center, trying to figure out how to sew everything together. Then, I tried placing different types of white fabric on top to see how the neopixels would be diffused. I also determined that the cord of the CPX would loop around the side of my waist (see below).

img_6036 img_6050 img_6088

With the belt around my waist, drawing black lines with a pen helped me determine where to place the conductive fabric so that they align perfectly when I buckle the belt.


Before sewing the conductive fabric on, I tested the alignment of the pen lines by taping on some pieces of non-conductive fabric.


Once I was happy with the placement, I cut out the conductive fabric to fit on the belt, and sewed them on.

img_6124img_6125img_6139img_6142 img_6144

Then I placed my CPX in the center, and cut out a small slit on the side to pull my cord through. This would hide the cord underneath my belt, but leave a gap to have it ‘poke out’ to connect to my CPX.


Next, I sewed conductive thread through both A1 and GND, and continued it down each sides of the belt. One sewing ‘path’ connected A1 to one piece of conductive fabric, and the other connected GND to the other piece of conductive fabric. It’s not pictured here, but to stabilize the CPX a bit more, I also looped non-conductive, regular thread through another hole in the CPX and sewed it through the belt. Here is how I tested whether the switch was working: Alligator Clip Test

Lastly, to cover up my conductive thread and CPX (and to make the belt a bit less flimsy), I wrapped a cut-out piece of linen pillowcase around the fabric and secured it, leaving only the belt buckle and conductive fabric exposed. The pillowcase was thick enough to make the belt more secure, but transparent enough to let the neopixels show through.


10. Makecode: Of course, I was simultaenously working on the code for my wearable. After many iterations, this is my final code.

  • The wearable’s switch is activated by A1. If the switch is turned on, the neopixels are set at red. At start, it plays the sound ‘power up’.
  • If the wearer is still for 1000 ms, the wearable plays the sound ‘wawawaa’, telling them to move.
  • On each shake, the neopixels on one side turn green one by one, playing the sound ‘ba ding’ until it reaches 5 shakes. This indicates a series of movements that add up to ‘dancing’. At this point, the wearable plays the rainbow animation with the sound ‘magic wand’.
  • In each of these steps, if the wearer stops moving, the ‘wawawaa’ sound will play.



Final Images & Videos

img_6227 img_6254







Here is a video of how the switch of the belt is activated. (P.S while I was fastening my belt, the conductive fabrics started touching and the wearable detected that I wasn’t moving — hence the ‘wawawaa’ sound playing while I’m still adjusting) Video 1

Here is a video of how the belt tells me to start moving, and how each shake leads up to the ‘continuous dance’ indication. Video 2

Reflections & Next Steps

If I had more time and resources, I would have wanted to use a different material for my wearable. The fabric of the belt was quite flimsy as mentioned before, and I suspect that it might have contributed to some slight glitches that appeared in my switch once in a while. Maybe the conductive thread wasn’t sewed tightly enough, or it got loosened because of the soft material! I would also like to program a way of detecting music as well, if I had the chance to revisit this project.

Resources & Related Works

Eckelkamp, S. (2020, November 20). Why Dancing Is Amazing for You Even If You Suck. Retrieved from

Kohler, C. (2019, September 11). 7 reasons why dance makes you feel so good! Retrieved from

UserGuest. (2019, February 17). Introducing WELT belt: A Smart Wearable for Health-care. Retrieved from



Assignment 2: Expressive Wearable – Tears

Concept & Objective – The idea was to create a hat that ether alone or in public can represent sadness or tears. While at the same time creating an aesthetically pleasing look that in darkness can simulate flashing tears across someones face. One blue light blinks and stops then a second LED blinks as if a tear was moving downwards.

Process – I started by drawing the circuit on paper and then creating it on its own using wires and a basic switch and creating the code for two lights blinking after another.



I then began sewing with regular thread to secure the fabric hanging off the hat that is meant to hold the LEDS. Then began sewing with the conductive thread.

img_20210211_135207 img_20210211_135225 img_20210211_143831

Then used blue tissue paper to mach the LEDS and encase them, but it also helps with the effect. Then used a large piece of conductive fabric in another hat to encase everything and complete the circuit when pressed against.


Final Images


Final Video:

Parts List:

  • Circuit Playground Express
  • Conductive Thread
  • Regular thread
  • 2 Clothes Pins
  • Conductive Fabric
  • 2 resistors
  • 2 LEDS
  • 2 Tuques
  • Tissue Paper

Reflection – The sewing was the hardest part. I had to restart twice because of conductive thread being to loose and connecting with another line of conductive thread and parts just falling off because it was hard to secure them properly. I also found great use of of mapping the circuit out with the normal wires and following that as I sewed and constantly checking with the real wires connecting them when I only had some of the parts sewn in and just checking with a wire before I used thread to make sure each step there wasn’t a mistake.

Assignment 2: Expressive Wearable – Mood Displayer

Parts List

  • Circuit Playground Express
  • Felt
  • Conductive Thread
  • Thread
  •  Two red LEDs
  • Two 220 Ω Resistors
  • Two Tich Buttons

Concept & Objective

The concept for this wearable is to display if someone wants to be approached or left alone. The wearable is meant to be worn as an armband that is lit at all times when on the wearer. It will display either a green smiling face or a red frown which is changed with the digital switch. The idea was inspired to help people with depression and/or anxiety to display what they are feeling and if they are comfortable with being approached. The smile allowing others to approach and the frown to ask others to stay away. If one displays the smile (with the switch on the right side) but feels uneasy at the approach of certain people they can tap on the red “X” and it will display the frowning face for 5 seconds. Similarly, if the switch is on the left, it will display the frown and change to the smiling face for only 5 seconds when the red “X” is tapped.

Concept Sketch 



To begin, I used the digital switch that I created when following the digital switch workshop to experiment and find the best way to apply my LED’s for the frowning face. As the circuit is circular I could display the smiling face with just the LEDs on the Playground Express itself, the only additional LEDs I needed were for the red eyes. First, I experimented with a series circuit on an Arduino breadboard so I did not need to sew anything on the fabric. When attempting this I noticed that two LEDs became bright and the others were a lot dimmer. This is pictured below.


After using the Arduino, I went back to my trialled switch and had sewn a single LED and resistor to the CPX on another pin. As this method worked I decided to attempt a parallel circuit for my lights as parallel circuits evenly distribute the same amount of power to each LED. The full process is shown below, including my sketch of the final circuit and how it turned out.

Trial Circuits:



2 LEDs with Resistors


Final circuit sketch:


Final circuit:


While working on the trial circuit I also started experimenting with the different ways I could encase the code in MakeCode. I trialled using functions with if statements that were called with another if statement, I also attempted using the buttons on the Playground express to control if the smile or frown would be ‘permanent’. With these methods the lights started to blink alternately without any command from the switch so decided to use the if statement with several conditionals to control the lights of the circuit playground express. Along with the if statement I created three basic functions, two of them were to show the face and the last one was to contain the pauses and wipe animations. These functions controlled only which lights were on and no other setting, in doing this it decreased the size of my “forever” function and was easier to maintain. The end result is if the switch is on the right, then the circuit will automatically show the smile and the opposite for when it’s on the left. Some other fun features I added to the lights is that when the digital switch is activated it will first play the colour wipe animation provided in MakeCode that wipes the lights with either blue or grey and then shows the face that is meant to be shown.

Final Version of Code screenshot-2021-02-12-003557

Video demo of wearable being worn!


In high school, I only learned the theoretical parts of circuits and so being able to recall the information that I once learned in the past and to be able to apply it to something I make is a lovely feeling. During this assignment, I realized I spend too much time playing around with the code on MakeCode instead of actually trying to establish a good circuit foundation for the code to run on. I learned how important it is to draft and redraft the circuit design before actually sewing anything down so that it won’t cause any problems later on. In the future, I hope to incorporate the different functionalities of the circuit playground express and also try and see how far I can take a parallel circuit using the board. I would love to experiment and see how many LED’s can the circuit playground take in a parallel circuit.