# From Data to Perception – Research Blog

Research on What kind of Visualisation we should use

We spent a few days researching the different kinds of visualizations we could use to communicate the data we were collecting.

Radar Charts are a way of comparing multiple quantitative variables. This makes them useful for seeing which variables have similar values or if there are any outliers amongst each variable. Radar Charts are also useful for seeing which variables are scoring high or low within a dataset, making them ideal for displaying performance.

2.Parallel Coordinates Plot

This type of visualization is used for plotting multivariate, numerical data. Parallel Coordinates Plots are ideal for comparing many variables together and seeing the relationships between them. For example, if you had to compare an array of products with the same attributes (comparing computer or cars specs across different models).

3. Parallel Set

Parallel Set charts are similar to Sankey Diagrams in the way they show flow and proportions, however, Parallel Sets don’t use arrows and they divide the flow-path at each displayed line-set.

We finally decided to go with the following visualization:

Listed Activities the participant needed to do

1.Play 10 games of Speed Chess
2.Workout for 30 – 45 minutes
3.Watch a horror movie
4.Play a sport/board game for 30 – 45 minutes
5.Play with an animal/dog
6.Control Day (participant goes about their normal day)
7.Learning a new instrument
8.Watch family videos/photos
9.Watch a comedy show
10.Wordplay, quizzing, and other literary games
11.Learning a new language
12.Meditation
13.Playing a video game
14.Memory Test
15.Sleep

We tried out the Muse headset and then found out that the user had to be still while the Muse was active for us to get accurate readings, so many of our planned activities had to be replaced with ones that did not involve a lot of movement.

We planned how every session would take place –

Each session includes a participant and an observer who serves as a moderator.

While the session takes place the observer takes notes about events, time, and external response. These notes could be written or audio. We will also take 3 photos for documentation purposes. One at the beginning of the session, one in the middle and one at the end.

At the end of each session with the participant, we record the quantitative data we get from the muse and submit it to a google doc. We also note down descriptions of the sessions so that we can trace activities to particular times and events.

Muse Activity Recording

Mobile App and Website Design

We designed the Muse Monitor App using our findings while being true to the Muse brand. We conceptualized and envisioned that this what our final product would look like where we would display our final visualization.

We also designed a website based on these designs

# inFORM-Tangible Media Group in MIT Media Lab

Shreeya Tyagi, Thoreau Bakker and Jeffin Philip

Introduction

inFORM is a Dynamic Shape Display that can render 3D content physically, so users can interact with digital information in a tangible way. This project was done by Tangible Media Group in MIT Media Lab. The purpose of this case study was to understand the design process and the research that was involved in the project.

MIT media lab created an interface based on inFORM that was able to give urban planners more control to be able to shape and view entire cities. Dynamic shape displays changes how we virtually collaborate from a display. We can touch and manipulate objects from a distance and also collaborate on 3D data sets.

MIT Media Lab

The MIT Media Lab is an interdisciplinary research laboratory at the MIT devoted to projects at the meeting of technology, multimedia, sciences, art and design.”Inventing a better future” is the theme of the Media Lab’s work. A current emphasis of Media Lab research, which encompasses the work of several research groups, is on human adaptability. Other Research groups at Media Labs are focused on .

Overview of the Tangible Media Group

The tangible media group was formed by Professor Hiroshi Ishii, explores the Tangible Bits & Radical Atoms visions  to seamlessly couple the dual world of bits and atoms by giving dynamic physical form to digital information and computation.

Vision driven design research of the Tangible Media Group

“Looking back on the history of HCI, they notice that quantum leaps have rarely resulted from studies on users’ needs; they have instead stemmed from the passion and dreams of visionaries like Douglas Engelbart. By looking beyond current limitations, the group believes that vision-driven design is critical to foster these quantum leaps, while also complementing needs-driven and technology-driven design. From Tangible Bits, an early example of their vision-driven research, they are shifting to Radical Atoms, which seeks out new guiding principles and concepts to view the world of bits and atoms with new eyes, with the goal of trailblazing a new realm in interaction design.

From the three approaches in design research: technology-driven, needs-driven, and vision-driven, they focus on the vision-driven approach due to its lifespan. They know that technologies become obsolete in ~1 year, users’ needs change quickly and dramatically in ~10 years. However, they believe that a clear vision can last beyond our lifespan. While they might need to wait decades before atom hackers (like material scientists or self-organizing nano-robot engineers) can invent the necessary enabling technologies for Radical Atoms, we strongly believe the exploration of interaction design should begin from today.” Tangible Media Group

Context, Significance, Related Works

Hiroshi Ishii, head of the Tangible Media Group (TMG) published an interesting paper in 2008, contextualizing the inForm project in terms of human evolution. In it, he notes that humans have developed “sophisticated skills for sensing and manipulating our physical environment”, yet most of these skills are “not used when interacting with the digital world where interaction is largely confined to graphical user interfaces“ (Ishii 32). He argues that, despite the ubiquity of graphical user interfaces (GUIs) as championed by Microsoft and Apple, there is something greatly lacking in these methods of interaction — that they do not allow us to “take advantage of our evolved dexterity or utilize our skills in manipulating physical objects” (32). That this project addresses these challenges and presents an alternative way to interact with digital content is both fascinating and valuable. It is not the first or only technology to interact with computers in a novel way, but the effect created is almost magical.

If there are other potentially more intuitive technologies that exist, why have they not been adopted? Perhaps the current dominant paradigm of keyboards, mice and increasingly, touchscreens, is to some extent influenced by the market. The assumption that it has to do, at least in part, with economies of scale seems plausible, and perhaps when demand increases enough, more alternative interaction technologies will become available. The tremendous potential of technologies like inForm to harness the incredible ‘touch’ skills humans already possess, speaks to the importance of research in these fields. While inForm was both groundbreaking and unlike anything seen before, there are a number of other projects that relate to the project conceptually.

The following examples will highlight other technologies that deal with interacting with data and virtual objects in unconventional ways.

Haptic Sculpting Device

There is a research lab at the University of Guelph called the Digital Haptic Lab, run by Dr. John Phillips and Christian Giroux. Their lab takes its name from a sculpting device, that provides haptic feedback through small motors, embedded in a multi axis pen type device. As a user uses the tool to ‘sculpt’ an onscreen three dimensional object, the haptic device varies the motor feedback to give the feeling of interacting with a real world object. The effect is almost startling, as one is able to ‘feel’ with the muscles of the hand, a virtual object that is not actually there. This device has a number of research and commercial applications, one of which is the design / sculpting of coins for general circulation.

This device is quite different from inForm in that it represents a virtual object in 3D space without the object actually being there, whereas inForm, as a “shape display”,  actually represents virtual objects as real objects (albeit in a low resolution) with its extendable pin blocks. Although very different, the underlying issues they address are related: how we make virtual and remote objects tangible.

Automotive Design: Still Using Clay

Another striking example of the relationship between technology and tangibility, is the automotive industry’s continued use of clay to model vehicles. Despite access to the best 3D software packages, holography, VR and other cutting edge technology it is still common, even a mandatory  in many design labs to build clay models. Take the following quote from an Wall Street Journal article, one example of many discussing this fascinating phenomena:

Indeed, despite Ford’s use of three-dimensional imaging technology that allows executives to don headsets and see a virtual vehicle in a computer-generated cityscape, the top brass won’t sign off on producing a new car—a decision that can involve spending a billion dollars or more—until they see full-size physical models” (see reference below).

The full-size models the article describes, are made of clay built on an armature and refined using hand held scrapers. For all the utility afforded by new technology, there is something missing in these tools requiring a real human touch, and the ability to see a full size model in the real world. The article notes that it is not a one or the other scenario however, and that 3D modeling is used extensively in the design process. The workflow goes back and forth, working together, and both tools afford special abilities and perceptions.

Again, this example is very different from the inFOrm project, even more so than the haptic devie. It is presented however, as an example of the importance of tangibility, and real world object. That it is essential even for multinational corporations with huge budgets and access to the latest technology, speaks to the value of what inForm is doing. The inForm project incorporates some of the best of both worlds in a way: The reproducibility and flexibility of the digital world, with the intuitive qualities and space of the analog / ‘real’ world objects.

Other related project:
Kinetic blocks: http://www.theverge.com/2015/10/14/9529947/mit-kinetic-blocks-shape-display-video

Technical overview:  How does it work? sensing method, actuation method, materials, relationship to user and audience

InForm is a dynamic shape display and at the same time it is also a tangible user interface. The key principles behind the interactivity of inForm are dynamic affordances and constraints. This is implemented through haptics, actuated affordances, actuation of physical objects etc. By mimicking familiar interfaces from tangible and physical domains, the inFOrm interface invites and encourage the user to interact with it. By providing constraints on these interactions the user input can be measured and used to control other actions.

The device consists of a shape display with rectangular pins, each controlled by a linear actuator, a kinect to sense depth information, a projector to display data. When used as a communication device both end users will have a set of theses components.

Each pin of the shape display can be individually moved using the linear actuators. The movement of these actuators are controlled using arduino chips. But the depth calculation and other calculations are done on an external computer. The linear actuator mechanism also employ PID controllers to detect and keep track of the position of pins and to provide accurate motion with continuous error correction.

The depth information is calculated from the depth image stream of kinect and is mapped to the movement range of the shape display pins. The projector is used for the visual feedbacks.

References/Bibliography

http://tangible.media.mit.edu/project/inform

@wsjeyesonroad. “One Thing Isn’t New in Car Design: Clay Prototypes.” The Wall Street Journal. Dow Jones & Company, 2014. Web. 13 Dec. 2016.

Ishii, Hiroshi. “The Tangible User Interface and Its Evolution.” Communications of the ACM 51.6 (2008): 32. Web.

Ishii, Hiroshi. “Materiable: Rendering Dynamic Material Properties in Response to Direct Physical Touch with Shape Changing Interfaces.” http://tmg-trackr.media.mit.edu/publishedmedia/Papers/598-Materiable%20Rendering%20Dynamic%20Material/Published/PDF

Ishii, Hiroshi. “TRANSFORM: Embodiment of “Radical Atoms” at Milano Design Week.” http://tmg-trackr.media.mit.edu/publishedmedia/Papers/554-TRANSFORM%20Embodiment%20of%20Radical/Published/PDF

# OptiTune

Title: OptiTune

Group members: Nana, Ginger, Jeffin

https://vimeo.com/195900950

End of session report form: https://docs.google.com/forms/d/e/1FAIpQLScYtcUHOisW-cRpMRChXUwvzfECQ86sx5AraUiFuxYtsdoJAw/viewform?c=0&w=1

What is the concept behind OptiTune?

Restoring the connection of an individual who has headphones on with other individuals, through displaying real time visualizations of what the user is listening to.

What is the form?

A 3 inch cylinder that lights up according to the beat of your music.

How does it work?

You can either plug in your headset and have the lights turn on according to your playlist, or take the headset out and have OptiTune visualize the sounds surrounding you.

What materials does it use?

1. Arduino micro
2. 3.5 mm audio jack (x2)
3. 3.5 mm audio cable
4. 100k resistor (x3)
5. Porto board
6. PCB mount pins
7. Portable USB charger

Preparations

What needs to be done ahead of time?

• Create prototype
• Set up the board with NeoPixel and microphone
• Sewing the prototype into a badge
• Constructing circuit and decorate the badge
• Charge battery pack

Do you need extra batteries?

• We have decided to use old phone batteries

What goes into your repair kit?

• Fabric, thread and needle, battery charger

During Process:

First of all, we will document our user experience on using the the optune. And also select a group of testers to try it. We will document the process by vedio and writing notes.

Secondly, we will carry on our stuff and test it in a daily life. We will take notes regularly and also take selfies at different locations. We will be observing other people’s reactions to us playing the Optune, and we will collect  quantitative data like how many times does people inquiry our product.

Crunching the data

How will you structure a debriefing conversation?

• Meet for a debriefing conversation, and take notes

What will you do with the data and media once you find it?

• Look for improvements for future iterations
• What was liked about the device?
• What was not like about the device?
• Was the device comfortable?

Where did you place your OptiTune?

We mostly put it next to our laptops when we were working on our projects at school. It was a fun and playful object that made stressful times entertaining.

What did you like about OptiTune?

Looking at the beautiful lights! Especially in the dark when the lights are off, or when you are taking a walk outside. It really is beautiful and exciting to see the music you are listening to.

What did you dislike about OptiTune?

The case, and the wires.

For future iterations we will have a case that can not only keep the device safe and waterproof but can easily be attached to anything.

How was the experience of the observers of your OptiTune?

We were on campus most of the time. So many of the people who passed us by were students. The fun part was when we were visiting the undergraduate buildings and the students would ask us if we had bought them from the OCAD store. Ofcourse, with pride we told them that we had made them as part of our project.

# timesUp

Group Members

Shreeya Tyagi | Orlando Bascunan | Afrooz Samaei

Introduction

timesUp is a minimal and stylish wearable timer that is designed to increase the productivity of the user. It can be worn on the wrist as a bracelet or hung from the neck in the form of a necklace. It features a timer which breaks down working time into intervals of 45 minutes followed by 15 minutes of break, or as we call it “play” time. Once the time is up the device notifies the user by a short vibration and blink of an LED.

The project was developed based on Pomodoro time management technique, introduced by Francesco Cirillo in the late 1980s. The goal of this product is to encourage the users to commit to a set of work and play time intervals and help them maximize their efficiency and minimize the distractions. In addition, taking short, scheduled breaks while working eliminates the “running on fumes” feeling that users get when they have pushed themselves too hard, leading to a more productive day.

The product includes a vibration notification system, an LED notification system, and also a button to activate the commands.

The instructions to use the product is as following:

• Press and hold the button to Start or Stop the timer.

– Start is notified as a single vibration

– Stop is notified as double vibrations

When it’s time to take a break or get back to work the device will notify you by 3 vibrations and the blink of the LED.

• Press the button to check the amount of time left on the timer. The LED will flash 3 times:

– Slowly if within the first half of the interval

– Fast if within the second half of the interval

• Press the button to toggle between Work time (45 minutes) & Play time (15 minutes)

– Work mode is displayed with two slow blinks of the LED

– Play mode is displayed with two fast blinks of the LED

Context

For many people, time is an enemy. The anxiety triggered by “the ticking clock”, in particular when a deadline is involved, leads to ineffective work and study behavior which in turn elicits the tendency to procrastinate. The Pomodoro Technique was created with the aim of using time as a valuable ally to accomplish what we want to do the way we want to do it, and to empower us to continually improve our work or study processes.

The Pomodoro Technique is founded on three basic assumptions (Francesco Cirillo):

• A different way of seeing time (no longer focused on the concept of becoming) alleviates anxiety and in doing so leads to enhanced personal effectiveness.
• Better use of the mind enables us to achieve greater clarity of thought, higher consciousness, and sharper focus, all the while facilitating learning.
• Employing easy-to-use, unobtrusive tools reduces the complexity of applying the technique, while favoring continuity, and allows you to concentrate your efforts on the activities you want to accomplish. Many time management techniques fail because they subject the people who use them to a higher level of added complexity with respect to the intrinsic complexity of the task at hand.

In order to develop this project, we considered ourselves as the potential users and thought of our daily challenges and needs in order to build a personalized product. All three of us were concerned with our time and how we manage it. Hence, we decided to build a product that helps us keep a better track of time passage while eliminating the distractions caused by traditional or phone alarms.

Design and Production Process

Since the goal of timesUp is to minimize the distractions, whether caused by the user or by other people, we wanted the product to be as invisible as possible, in a way that it does not draw the user’s attention towards itself and also does not invite others to inquire about it. This main principle formed many of our design decisions. For instance, there is no visual sign, such as lights, indicating that the device is running, in order to minimize the attention drawn by the device. However, the user can still check the time passed or make sure the device is running by pressing the button and watching different blinking modes of the LED.

In order to better user test different forms of the product and come up with the best design solution as we compare them, we decided to build three distinct products, while keeping the aesthetics, design choices, and functionality identical among the three objects. This gave the wearable flexibility and comfort along with ease of use. We built a bracelet and two different necklaces.

We used 3D printing to build the prototypes. The main reasons behind choosing 3D printing was firstly because of its rapidness and low cost, which enabled us to do multiple iterations of the product and try different forms, before coming up with a final solution. Secondly, the light weight of the plastic made it a perfect choice for the material of this particular wearable product, as comfort should be a key feature of both the bracelet and the necklace.

The 3D printer we used was the MakerBot Replicator 2 and the polymer material filament was PLA (Poly Lactic Acid). After creating a range of textural vocabulary, we printed multiple disks with different textures and stacked and glued them on top of each other. There is a little slit cut on the side of the products that allows USB connection, in case the battery dies in the middle of a work session or in case a new code should be uploaded to the microcontroller.

The artistic details/forms of the product were explored in Autodesk Fusion 360. These were based on contemporary jewelry, which worked to our advantage since we were able to use the device in our everyday lives without the device attracting much attention in public workspace.

The circuit used in timesUp is identical among all the three prototypes. It consists of a mini vibrator motor, an LED, and a button, all connected to Gemma microcontroller. The reason behind choosing Gemma was mainly because of its small size and low cost. Although some features of the Gemma such as not having a serial port made it difficult to debug the code, it overall provided the functionality that we were looking for. In addition to the above components, we also used diodes to protect the components against reverse or negative voltage, transistors used as amplifiers, and also two 1K resistors.

Here is a complete list of all the components used:

User Testing Process

After building and integrating the circuit into the 3D printed objects, we tested the timer by setting the alarm to vibrate after one-minute intervals, in order to make sure that the timing and notifications work perfectly. We then set the alarm to vibrate 45 minutes after starting the test, indicating the start of the break, followed by another vibration after 15 minutes, showing the end of the break. Since the goal of our product was to keep the user focused and away from any possible distractions, we took notes and wrote down any significant comments on a piece of paper during the 15-minute breaks. After the user testing session was done, we filled up the following questionnaire:

Overall, the product felt comfortable and familiar. Although some of the notifications were confusing sometimes, the overall experience was smooth and straight forward. The bracelet version was more reliable in term of detecting the vibration notifications compared to the necklaces, as we noticed that it was sometimes hard to feel the vibrations of the necklace. Unexpected challenges were to isolate from water as the enclosure is firm but permeable.

The link above contains the results of our responses to the user testing questionnaires. The image below also shows some of the highlights of these results.

Instructions Handout

Challenges, Outcomes, and Future Iterations

The timesUp wearable is designed to help with time management and increasing focus level while working or studying. Although we found it challenging to commit to the designated time intervals at first, we realized that this product could help us gradually increase our efficiency and minimize distractions, when using it over a longer period of time.

The main challenge was to integrate the commands such that the product is equipped with different functionalities, while maintaining simplicity. It was challenging to play with various functionalities that the combination of a button, LED and vibrator could provide, in a way that they become intuitive to the user after a while.

The other difficult aspect of the project was the size of the product. The goal was to make the product simple, light, and relatively small. Hence, we spent a considerable amount of time carefully soldering the delicate components we were using and stacking them on top of each other such that they occupy the minimum amount of space.

For future iterations, we would like to make the On/Off switch on the gemma accessible to use. This would make the interactions with the device simpler as we could save the “holding button” action to switch between work and rest mode, and use the “pressing” action to check the time. A charging module or a disposable battery would make it easier for the user to keep the device running as the gemma doesn’t charge batteries. In addition, housing the button inside the device and using the the whole display to touch and press it could give a more sleek look to the product, as pressing the button is the only interaction needed from the user. Lastly, insulating from the water seemed relevant to do for the wrist piece, as it is in the splashing radius when washing hands/dishes.

References

Cirillo, Francesco. The Pomodoro Technique: Do More and Have Fun with Time Management. Berlin: FC Garage, 2013. Print.

http://www.digitaltrends.com/wearables/re-vibe-anti-distraction-wearable/

https://www.makerbot.com/replicator/

http://www.autodesk.com/products/fusion-360/overview

# YES WE CAN BOX

project title
Yes I Can Box

names of group of members

Thoreau Bakker

Concept:
The ‘Yes I Can Box’ is a simple tool for reducing anxiety. This portable device is intended as a coping mechanism, providing self soothing immersive light on demand at the push of a button. It delights the eye with a range of colour washes and patterns, and this delight is amplified when shared with others.

The concept is both a practical solution during and from the outcome of our research. Our team consolidated a direction for hardware relatively early in the twelve day cycle, but experienced increasing tension while trying to reach consensus about the marrying of concept to code. Frequency of events and what those events represented, consistency of home vs school network access, and trying to do justice to the twin eight hour formats, were all factors influencing our struggles. For these reasons, we decided to keep the concept simple, and really focus on the execution of the build parameters — making a rugged circuit and polished portable device, fully functional and ready for our user testing.

While the concept is simple, it speaks to an important issue. Most of us experience some level anxiety on a weekly — if not daily — basis, and we would argue an important factor in mental health is the way we deal with these challenges. The tools we use (psychological, physical, social) are acquired as navigate life. Some are taught to us as children, some we learn from our environment. Some coping tools are healthy (talking with friends, exercise), while others are not (substance abuse, self harm).

We are not psychologists and have neither the experience nor the visions of grandeur to promote this as a ‘solution’. This project is just a small gesture both to ourselves and to the world — a simple and delightful portable device that elicits a real (if fleeting) moment of comfort and pleasure.

project description, including overview of object and intended context and users

Human thinking is accompanied by a variety of subjective experiences, including moods and emotions, metacognitive feelings (like ease of recall or fluency of perception), and bodily sensations. A new interpretation is given to the controversy over emotions by identifying the conscious differentiating aspect of the emotions with the feelings. Four differentiable feelings are recognized: pain-unpleasantness, pleasure-pleasantness, excitement, and depression. In accord with the Cannon theory, the anatomical seat of these processes is assumed to be projection areas of the thalamus. Pain and unpleasantness are assumed to differ only in degree, as are also pleasure and pleasantness. The characteristic tone of the emotions is supposed therefore to result from these affective components. This would account for the failure to find visceral or behavioral differentia for the emotions, and would not throw the whole burden of differentiation on the perception of the stimulus situation

The relations of emotion and feeling is connected together to formulate and human action these action can be any things such as modes and senses, emotional variations. This project is reaction to daily emotions and feelings.

Device Images:

production materials
Wood
Acrylic
Silicon Wire
Proto Board

feather huzzah

NeoPIxel Stick

Design Process :

BIlls of Material:

 FEATHER HUZZAH WITH ESP8266 WIFI*** FEATH-002821 Adafruit / Creatron 24.5 3 73.5 https://www.creatroninc.com/product/feather-huzzah-with-esp8266-wifi/?search_query=huzzah&results=4 8 RGB WS2812 ADDRESSABLE STICK* LEDRG-012668 Adafruit / Creatron 6.95 3 20.85 https://www.creatroninc.com/product/8-rgb-ws2812-addressable-stick/?search_query=neopixel+stick&results=1 26AWG SILICONE WIRE – RED* WIRSI-001877 Creatron 2.25 1 2.25 https://www.creatroninc.com/product/26awg-silicone-wire-red/ 26AWG SILICONE WIRE – BLACK* WIRSI-001881 Creatron 2.25 1 2.25 https://www.creatroninc.com/product/26awg-silicone-wire-black/?search_query=silicon+wire&results=13 26AWG SILICONE WIRE – YELLOW* WIRSI-001879 Creatron 2.25 1 2.25 https://www.creatroninc.com/product/26awg-silicone-wire-yellow/?search_query=silicon+wire&results=13 LITHIUM ION BATTERY – 850MAH* UBATT-008481 Creatron 15.55 3 46.65 https://www.creatroninc.com/product/lithium-ion-battery-850mah/ 16.5 X 11CM PROTOTYPING BOARD WITH TRACE PCBDA-990020 Creatron 6.4 3 19.2 https://www.creatroninc.com/product/165-x-11cm-prototyping-board-with-trace11/ SMALL SPDT SLIDE SWITCH* SWSLI-009609 Creatron 1.1 3 3.3 https://www.creatroninc.com/product/small-spdt-slide-switch/ 1/4W 5% RESISTOR (10 PACK)*** RESIS-500025 Creatron 0.25 1 0.25 https://www.creatroninc.com/product/14w-5-resistor-10-pack/ 16MM MOMENTARY SWITCH – PANEL MOUNT SWPUS-001445 Creatron 1.65 3 4.95 https://www.creatroninc.com/product/16mm-momentary-switch-panel-mount/ SUB TOTAL 175.45 TAX RATE 0.15 TAX 26.3175 SHIPPING 0 (items are in Toronto) TOTAL 201.768

Final circuit diagram:

Final Code:

https://github.com/sharkwheels/CC_portables

BUILDING PROCESS:

User testing materials:

User testing plan

Devices have a built in charging circuit. So they don’t need extra batteries, but they do need to be fully charged before starting.

For a repair kit we’re going to need:

→ micro screwdriver to unscrew it if needed.
→ electrical tape, in case a connection busts.
→ micro USB charging cable

During Field Testing:

Most of our data collection during will be personal journaling (maybe just one entry). The goal of this box is to help relieve anxiety, so writing a journal entry about how we were feeling, what else is happening in our lives, and how external things are affecting

http://tinyurl.com/portablesForm

TESTING PROCESS :

Devices have a built in charging circuit. So they don’t need extra batteries, but they do need to be fully charged before starting. The connections are female headers attached straight to the summary of the testing process

ather vs a proto board. For a repair kit we’re going to need:

→ micro screwdriver to unscrew it if needed.

→ electrical tape, in case a connection busts.

→ micro USB charging cable to charge if low

Before photos will be of the assembled device, fully charged.

During:

Most of our data collection during will be personal journaling. The goal of this box is to help relieve stress, so writing a daily journal will be about how we were feeling, what else is happening in our lives, and how external things are affecting you.

End of Session Report

→  how would you describe your general emotional disposition?

→  how do you generally cope with anxiety?

→  what were your expectations before using the device?

→  how many times do you think you used the button today?

→  what situations did you find yourself mostly using the button in?

→  Did it improve your mood or help?

→  Did it break / did you have to repair it?

→  Do you think it could be helpful to others?

Crunching Data

Debriefing convo:

→ Round table talk about what worked form wise and what didn’t

→ How the device got in the way of the day or didn’t.

→ Did we end up using the device for a different purpose that its intended use?

→ Did it actually help us?

What will you do w/ the media collected:

→ Probably throw together a small mini site or blog w/ journaling and pictures.

Build Issues
Some of the issues we ran into code wise were mostly related to libraries not playing nice with one another. Originally this item was going to be networked, but it was discovered that the Adafruit IO rest library intereferred with the neopixels / neopattern non-blocking option due to a re-connection script running the background. A work around is still being looked at. Other build issues were related mostly to switch placement. Because the project flip flopped a bit, considerations on where to put an off switch, have the recharge connection facing out, or a panel button were done somewhat on the fly. But our case design was modular so as a first run, it worked out in the end. There were also some parts related consistency issues around what was available locally. For example: difference in size of Adafruit branded pixel strips and non-branded pixel strips.

references & related works

Related Works:

Form Studies:

Everyday Carry:

# Hot Feet

Experiment 5 -Bijun Chen, Masha Karimi, Katie Micak

HOT FEET

DESCRIPTION:

When faced with the challenge of Experiment 5- multiples, we were most interested in creating a prototype that could be built upon in a practical way. Our goal was to also create something which could have a use beyond the classroom. “Hot Feet” was born out of the spirit of giving. Ideally, this giving would be to those who are unfortunate to spend more time than comfortable out in the cold, namely those that are homeless (though there could be many other applications or users).

Hot Feet is a shoe that offers battery powered heat by closing a simple circuit. It consists of one battery that sends a charge first through the right shoe (which holds the battery) and then sends it to the left shoe, turning on both heating pads found in the insole of each shoe. The circuit is completed when the shoes are put together at two points of contact, positive and negative. After a few seconds both shoes will begin to heat up, and the battery will not be active if this circuit is not closed resulting in neither shoe creating warmth.

CONCEPT:

In creating Hot Feet we wanted to create a warming shoe that would:

1. Be simple to use
2. Ran off of a rechargeable battery
3. Would be inexpensive
4.  Could be easily replicated
5. Inconspicuous in design
6.  Safe and durable

PART LIST/ COSTS:

Our total costs for 3 prototypes is around \$220.00, with the highest expenses going towards the shoes and the batteries.

 Part Name Quantity Cost for Each Supplier Cost Total Cost Total with Tax Link: Shoes 3 pairs 20 Payless Shoes 60 67.8 Heating Pad 6 7.4 Creatron inc 44.4 50.17 https://www.creatroninc.com/product/5v-heating-pad-5x10cm/?search_query=heat&results=84 Conductive Fabric 1 piece14*12″ 19 Creatron inc 19 21.47 https://www.creatroninc.com/product/conductive-fabric-14×12/?search_query=conductive+&results=40 Conductive Thread 1 * 30ft roll 4.85 Creatron inc 4.85 5.48 https://www.creatroninc.com/product/conductive-thread-30ft/ LITHIUM BATTERY – 1200mah 3 17.85 Creatron inc 53.55 60.51 https://www.creatroninc.com/product/lithium-ion-battery-1200mah/?search_query=lithium+battery&results=28 Felt 1 pack 3 Dollarama 3 3.39 30awg Silicone Wire – 2M 2 pack 1.8 Creatron inc 3.6 4.07 https://www.creatroninc.com/product/30awg-silicone-wire-green/?search_query=silicon+wire&results=13 Regular thread and needles 1 box 3 Dollarama 3 3.39 Total cost: 216.28

BUILDING PROCESS:

Each person purchased a shoe that reflected their preference. Our hope was to create a prototype that could be integrated into multiple shoe designs regardless of the show structure. The shows purchased were: a running shoe, a winter boot with faux fur lining, and a casual high heel with laces.

Once purchased we each created insoles that would contain the heating pads and created a thin boundary between the pad and the foot of the wearer. All wires were connected using simple sodered connections and conductive thread. We created the switches on the outside shoe, and sewed conductive thread from the inside to the outside of the structure at points were the feet naturally lined up and made contact.  The thread on the outside would be create the connection over both shoes and complete the circuit.

CONNECTIONS/ ISSUES:

The Connections inside of the shoes were loose. Loose connections inside of the shoes had higher resistance than the actual heating pads ( P = VI = RII ) which resulted in the connections heating up more than the actual pads to the point that the heat was not bearable anymore. These heating pads require a lot of power to run and also their temperature can go as high as 60 C degrees. Running them in series requires less battery usage and also brought down the heating pads temperature to a more bearable heat. Hence we had less energy waste. If the connections are done perfectly, these shoes should function even in rain since the resistance of water over felt (material that the shoes are made out of) is higher than the resistance in conductive fabric and conductive thread. Therefore the currents would still run through the path with lower resistance. The placement of the battery on these shoes were very crucial. our initial design paced the battery somewhere on the outer side of the shoes to make sure no interfering with the comfort of the wearer’s feet. However cold weather also interferes with the battery performance. Our challenge was to find the best location for the battery inside of the shoes where it is still comfortable to be worn. Having the battery inside of the shoe resulted in the battery staying at a temperature range which prevents it from discharging quickly.

First Image shows the parallel circuit diagram and the second shows the series circuit diagram.

POWER In the parallel format there will be a bigger power supplied to both pads. In the series diagram there will be less power supplies. hence the series diagram is more power efficient.

HEAT higher heat produced by the pads due to higher resistance there will be less heat produced by the pads.

MATERIAL Parallel diagram needs at least three points of contact to perform therefore more material to connect/wire the three conductive fabric switches on each shoe. Series diagram needs at least 2 points of contact to perform hence less material usage.

EFFICIENCY In the parallel circuit if one part disconnects the other part still performs, whereas in the series circuit it is required for all parts to be connected and perform ignorer for the entire circuit to work.

SURVEY/ RESULTS:

Three users would wear the shoes for 16 hours, or two days, for the duration of the experiment. Although the prototype worked correctly, each user had different reported experiences.

Katie’s shoe worked well (at first). Heated up to a comfortable warmth quickly. Was comfortable. Day two the circuit got overloaded and caused a burn on her foot- she had to remove her shoe quickly.

Mahsa had a similar experience. Her shoe worked for quite a few hours before the connections got strained and she also received a burn on her foot, while in public.

Bijun’s shoes worked the whole time. Her connections were sound. Her biggest issue was recharging the battery, which she did do only once. The reason her show was probably successful the longest

SURVEY:    We created this quick survey to cover the main points of Hot Feet.

MAHSA’S RESULTS:

Did Heated Insoles work?  Yes

How comfortable is the shoe? (1 less comfortable- 10 most comfortable)  8

Did the battery last?  Yes

Did you have to recharge the battery? Yes

If yes, how many times/ how long did it take?  I charged the battery once after the first day of experiment (first 8 hours) were over.

Do you think “Heated Insoles” would work keep feet warm for people spending long periods of time outdoors?  Yes

Did Heated Insoles warm up your feet?  Yes – and my feet stayed warm long after I took my feet apart.

How warm were your feet? (1 coldest – 10 hottest)  7

What would you change?

I would change the material that the insole was made out off. The felt insoles were too thin to hold their shape and were moving around inside of the shoes.

The Connections inside of the shoes were loose. Loose connections inside of the shoes had higher resistance than the actual heating pads ( P = VI = RI 2 ) which resulted in the connections heating up more than the actual pads to the point that the heat was not bearable anymore.

The choice of having the pads running in a series circuit worked well. These heating pads require a lot of power to run and also their temperature can go as high as 60 C degrees.

Running them in series requires less battery usage and also brought down the heating pads temperature to a more bearable heat. Hence we had less energy waste.

If the connections are done perfectly, these shoes should function even in rain since the resistance of water over felt (material that the shoes are made out of) is higher than the resistance in conductive fabric and conductive thread. Therefore the currents would still run through the path with lower resistance.

How helpful was the repair kit?

The repair kit was very handy. It consisted of:

2. Conductive Fabric
3. Aluminum Foil
4. electric Tape to go over possible loose connections

BIJUN’S RESULTS:

Did Heated Insoles work? Yes

How comfortable is the shoe? (1 less comfortable- 10 most comfortable) 6

Did the battery last? Yes

Did you have to recharge the battery? Yes

If yes, how many times/ how long did it take? Once, exchanged to another battery

Do you think “Heated Insoles” would work keep feet warm for people spending long periods of time outdoors? Yes

Did Heated Insoles warm up your feet? Yes

How warm were your feet? (1 coldest – 10 hottest)  8

What would you change?

The number one thing I would change is the material of the insole, the one I had (felt) cannot handle daily wear and tear, it looked very nice before putting into the boots. I guess that is something we have not considered well. Secondly, I would change the style of the boots. I think my other teammates suffered less when they made theirs. Mine is very tall and has no opening, and it makes it extremely difficult to work with the insole and the connection part in the bottom; and for the top connection conductive fabric, it’s easier to work with, but I can feel the wires when wearing those. I believe the better solution to this problem would be to start / hack the boots with a zipper/button or any kind of opening in the back or side.

Using boots is a good idea because they are more likely to be worn during cold weather, with the heating pad.

How helpful was the repair kit?

KATIE’S RESULTS:

Did Heated Insoles work? Yes

How comfortable is the shoe? (1 less comfortable- 10 most comfortable) 7

Did the battery last? Yes

Did you have to recharge the battery? No

If yes, how many times/ how long did it take?  N/A

Do you think “Heated Insoles” would work keep feet warm for people spending long periods of time outdoors? Yes

Did Heated Insoles warm up your feet? Yes

How warm were your feet? (1 coldest – 10 hottest) 7

What would you change?

On the second day the when I put my feet together the heating pads turned on very quickly. After about 5 mins (and once the circuit was broken) I started to feel a slight shock or burn. It was in my right shoe, the same shoe with the battery. So it was a unsafe in its current design.

I would change a lot about construction- probably make the wires stronger or embed them in the shoe. Also create a shoe that was fire resistant.

How helpful was the repair kit?

It was helpful, but I did not use it as I was not confident that my repairs would be safe.

POSSIBLE NEXT ITERATION:

Our results concluded that this type of shoe could possibly be safely, durably and successfully constructed. It could be created to be hooked into existing shoes, or be a whole new shoe in itself. I found this project to be successful simply because we did create a functional prototype that could find legs and multiple uses in the real world.

Video for HOT FEET:

Documentary on the making of HOT FEET:

# Fluorescence

Group members: Ania, Samaa, Sara

Fluorescence on Int Var Void webpage

Project Description

Fluorescence is an investigation into wearable technology: how it is made, how to wear it, and how the public responds to it. The goal of the project is to create a fashion accessory that is aesthetically pleasing, but that pushes the boundaries of ‘normal’ clothing. We created three warm, soft scarves with a technological twist — they light up in the dark.

It was important to the group to create a wearable that was beautiful — something that would inspire joy in the wearer and the people around them. The idea of a flower-shaped scarf grew from a discussion on how flowers respond to light in nature. A photoresistor seemed like the right fit, and we decided on a scarf because it mirrors the shape of an abstract flower —  the bulk of the fabric represents the stem, the LED lights represent the stigma and the hanging tassels are the flower petals.

We did not want to jam technology into something that doesn’t really need it. Instead, we carefully placed the LEDs in a subtle position that accentuates the natural beauty of flowers. There are practical benefits to have LEDs in a scarf: wearers become more visible to drivers when they are walking or cycling at night, and when the petals are ‘pulled back’ the scarf can double as a flashlight. But our focus was foremost on aesthetics. We wanted to create someone attention-grabbing, thought-provoking and at the same time covetable by a wide-range of people.

We made the scarves different colours to match each group member’s personal style. Each member chose the base colour of her scarf and the size and colour of her flowers.  At first, we were all a bit hesitant to jump on the subway and go to grocery store wearing LED lights, but after a few compliments later it became very enjoyable and we all agree that we would like to continue wearing the light-up scarves beyond the scope of this project. Based on the feedback we received, we conclude that the world is ready for joyful light-up scarves.

Production Materials

Per person:

• 2 x scarves (cut at an angle – see diagram below – and “leaves” made of same fabric sewn on for texture)
• 4 x fake flowers
• 4 x large white diffuse LED
• 1 x light dependent resistor
• 1 x 10k resistor
• 4m silicon wire
• 1 x Arduino micro
• 1 x proto board
• 1 x USB battery pack

Design Files

Circuit

User Testing Plan

Preparations

• Create scarves
• Embedding LEDs inside flowers
• Sewing wires into scarf
• Constructing circuit and attaching breadboard to scarf
• Charge battery pack
• We have decided to use portable USB chargers
• We chose this in order to simplify the process of charging the batteries every day, and to limit the costs and the number of lithium batteries that we use

Repair kit

• Stitch undoer, thread and needle, tape, a cord to charge the battery

During

• We will be observing other people’s reactions to us wearing the scarves, but we will not be collecting any quantitative data
• We will keep a daily journal and note down what people’s reactions are
• We will also include photos and videos in this journal/documentation
• We will take selfies each hour to document the condition of the scarves
• We will also ask other people (in short video clips) what they think of our scarves
• Although there will not be complete consistency throughout, we will approach the photos and videos with the same intention and framework

Crunching the data

• After all three of us have completed our user testing each day, we will meet for a debriefing conversation, and we will record this session
• We will follow a conversational, unstructured format where we talk about what we enjoyed and did not enjoy about the experience
• We can see which experiences we had in common, and discuss future iterations or changes we would make to the scarves
• Try to find patterns in our experiences
• Draw conclusions on how people view and digest electronic wearables.
• Is it viewed with hesitation and hostility or will people enjoy seeing it?
• See what sorts of improvements we could make in future iterations

Process Journal

Once we had decided on the scope of our project, we identified the materials that we needed. We bought scarves and fake flowers from Chinatown, a selection of LEDs from Creatron, as well as 7 metres of silicon wire. We already had protoboards, LDRs, resistors, and Arduinos in our kits.

Using examples from the Arduino website, we constructed a circuit on a breadboard using our components, initially using two resistors – one for the LED and one for the LDR. We realized that the brightness of the LED was affected by the 10k resistor, so we decided to remove it.

The selection of LEDs we bought were different colours and created different “effects”, including ‘bright’, ‘super bright’ and ‘diffuse.’ We also planned to use different colours – red, yellow, and white – and tested the different LEDs to see which ones looked best. Ultimately we chose the ‘diffuse’ effect, and we realized that the different coloured LEDs all had different voltage, so we decided to simplify the circuit by using only white diffuse LEDs.

To create the “light bulb” in the flower we soldered 50cm of silicon wire to each of the white LEDs, and then put a blob of hot glue between the legs of the LED so that the positive and negative currents would remain separate. We soldered 50cm of silicon wire to the LDR as well. We then replicated the circuit from the breadboard onto each of our protoboards which we had cut in half to fit inside the pocket in our scarves.

We split the flowers into “left” and “right” sides, two flowers for each side. We soldered the negative wires together, and then the positive wires together, for both flowers on each of the sides. We then soldered these wires to the protoboard to complete the circuit. We secured the connections with electrical tape.

After we had finalized our circuits, we started “building” on the scarf. We had two scarves each which we cut in a parallelogram shape, as per our design, and used the second scarf to cut out “leaf” shaped pieces which were sewn to the first scarf to create texture.

We then sewed the wires of the flowers into the scarf to hide them. We sewed the LDR wire into the scarf as well, but placed the LDR in a visible location near the bottom, where the scarf would hang around our neck. We chose this placement so that the LDR would not get obstructed by our hair or bags, and would be able to sense the brightness of the space we were in.

Finally, we attached the USB battery pack to the Arduino to test that everything was working.

When it was confirmed that the circuit was responding to external brightness, we were satisfied with the technological development of the scarves, and moved on to our user testing phase. Our results are below.

User Testing Results

Media Gathered

References

LED fashion is becoming a popular topic in the fashion world.  We were inspired by “Cute Circuit” and also Ronnie Brust’s designs.