Sound and Heart Beats – Interactive Mat

music beats & heart beats

Music Beats & Heart beats by Alicia Blakey


Music and Heart Beats is an interactive installation that allows users to wirelessly send sounds and interact with a digital record player. Through the installation, you can either send someone a sound beat or a heartbeat. Listening to certain music or the sound of loved ones hear beat has proven to help improve mood and reduce anxiety.

If a user opens the application connected to the interactive record player they can see when others are playing songs. The digital record player then starts spinning and is initiated when a user interacts with the app that corresponds with the installation. The pin on the record player is indicated by LED lights that music is being played or this fun interaction can also be initiated through touch sensors as well.

This art installation also conceptualizes the experience of taking a moment to initiate with your senses of hearing and touch to have fun and take a few minutes out of your day to feel good and listen to sounds that are good for your body and mind.






Initially, I had a few variations of this idea that encompassed the visual of music vibrations and heartbeat blips. After the first iteration, the art and practice of putting on a record engaged with the act of listening more.  The visual aspect of watching a record play is captivating with in itself.  I always notice after someone puts on a record they always stay and watch the record spinning. There is something mesmerizing with the intrinsic components of this motion. I wanted to create an interaction that was more responsive with colour, light and sound. Expanding on the the cyclical nature of the turntable as a visual the intent was to create an environment.







While choosing materials I decided to use  a force sensitive resistor with a round, 0.5″ diameter, sensing area. This FSR will vary its resistance depending on how much pressure is being applied to the sensing area. The harder the force, the lower the resistance. When no pressure is being applied to the FSR its resistance will be larger than 1MΩ. This FSR can sense applied force anywhere in the range of 100g-10kg. I also used a WS2812B Neo pixel strip envoloped in plastic tubing. The LED strip required 5v power while the feather controller required 3v power. To make running power along the board easier I used an AC to DC converter that converted 3v and 5v power along both sides of the breadboard.





When initializing the video it with testing it proved more optimal that the  video sequence sat over the controller by changing the z index styling.  My next step was to apply a mask styling over the whole desktop page to prevent clicks altering the p5 sketch. Styled the controller.js to be in the same location as both desktop and mobile so it could share pub nub x y click locations.  The media.js  file would connect with the controller.js for play and stop commands. One of the initial issues was a long loading time for the mobile client. The solution was distinguishing with inline javascript a variable that we can use to stop the mobile client from running the inload audio function.T he mobile and desktop sites were not working on iphone only on android.  Pub nub would initiate on android mobile phones but in the end could not debug the mobile issue. If the desktop html page was loading its media.js  while a mobile client was trying to communicate with it the overlying result was unexpected behaviour. A possible solution would be to apply in the desktop a call back function; this would tell the mobile client it is loaded.







  • Breadboard
  • Jumper cables
  • Flex, Force, & Load Sensor x 3
  • YwRobot Power Supply
  • Adafruit Feather ESP32
  • Wire
  • 4×8 Canvas Material
  • Optoma Projector
  •  6 x 10k resistors
  •  3.2 ft Plastic tubing


I decided to use a breadboard instead of a proto – board this time due to the fact that the interactive touch sensitive mat was large. In order for the prototype to remain mobile I needed to be able to disconnect the LED’s and power converter. It was easier to roll the mat up this way and quickly reconnect everything. Since I was running over 60 LEDS I used a 9volt power supply to run through the converter.  I originally tested with the 3.7k resistors but found the sensors were not really responsive. I then replaced and tested with the 10k resistors and the mat had varied greatly in sensitivity and was more accurate.


The outcome of my project was interesting people were really encompassed in just watching the video  projected onto the interactive mat.  Being able to control the LED’s was a secondary approach that users seemed to enjoy but just watching the playback while listening to music seemed to cause a state of clam and happiness. The feedback and response to the instillation was very positive. It was noted that the projection was hypnotic in nature. The installation was designed to bring a state of calm and enjoyment.  Although the LED’s were very responsive with the touch sensors there was some flickers on the LED’s I think due to an issue with the converter dwindling. I had purchased used but after using the Ywrobot converter would purchase new for other projects.  Other comments suggested that I add another interaction into the p5.js sketch to enable users to control the motion of the record through the video with the sensors. The overall reaction was very promising for this prototype. I’m extremely happy with the conclusion of this project. There was a definitive emotional reaction that the project was designed for.