Sound Synthesis

Project by: April De Zen, Veda Adnani and Omid Ettehadi
GitHub Link:


Music Credit: Anish Sood @anishsood

Contributors: Olivia Prior and Georgina Yeboah
A special thanks to Olivia and Georgina for letting us leverage the code from experiment 2, Attentive Motions. Without the hard work contributed by both these ladies the musical spheres would not have been finished in time, we are truly grateful.

Figure 1.1: Left, Final display of Sound Synthesis
Figure 1.2: Center, Sound Synthesis Team
Figure 1.3: Right, Special thanks to Attentive Motions Team

Project overview
Sound Synthesis is an interactive light and music display that allows anyone passing by to become the party DJ. There are 3 touch points to this system. The first is the ‘DJ console’ which is made up of children’s blocks. Each block controls a different sound stem which is triggered by placing a block on the console. The next two touch points are wireless clear spheres which contain LEDs and a gyroscope that triggers another sound stem when the sphere is moved. These interactions not only activate sound and lighting but it also invokes a sense of play among all ages.

Intended context
The teams intent was simple- bring music and life to a gallery show using items common in child’s play. Relinquishing control over the music and ambience at a public event seems crazy but this trio was screwy enough to give it a try. The goal was to build musical confidence among the crowd and allow them to ‘play’ without the threat of failure. For a moment, anyone is capable of contributing the mood of the party regardless of their musical experience.


Figure 2.1: Left, Final display of Sound Synthesis
Figure 2.2: Veda showcasing the capabilities of each musical sphere
Figure 2.3: Veda showcasing the capabilities of the DJ console
Figure 2.4: Center display in action

Product video

Production Materials


The team brainstormed different ways to combine older projects together to create a playful music experience for those visiting the end of semester show. The ideation process started off quite ambitious, attempting to match the same footprint as another project called ‘The sound cave’.

Figure 3.1: Left, Initial drawing of floor layout
Figure 3.2: Center, Initial drawing of DJ console, sphere and proposed fabrication of center display
Figure 3.3: Right, Initial drawing of additional touch points for more interactions (if time allowed)

The sound cave had five stations hooked up the their center unit with a different interaction at each station. The original plan was to use the display tower from Omid’s Urchestra project as our center display with a few alterations. The first station would involve a kid’s puzzle which was taken from Veda’s Kid’s Puzzler project and the interaction would remain the same, utilizing the pull up resistors and copper tape to create a button. The next station would have the clear spheres from the Attentive Motions project and the interaction would also remain the same, utilizing the gyroscope to sense motion to send a signal to the main unit. The next 3 units would be brand new and this is where our ambitions got the best of us. After further group discussion, it was decided only to add one more station to the project. The new station would involve a version of a touch sensor which would require a wearable to ground the circuit, see figure 3.3.


Figure 4.1: Left, For a detailed understanding of the LED tower : Urchestra
Figure 4.2: Center, For a detailed understanding of the block puzzle : The Kid’s Puzzler
Figure 4.3: Right, For a detailed understanding of the clear spheres : Attentive Motion

Journey Map


Figure 5.1: Top, The first ambitious version of the Journey Map
Figure 5.2: Bottom, A more realistic and achievable Journey Map

As a team, we came up with a schedule. Early on we wanted to make sure we were being realistic with the amount of work we were taking on, especially since there were many other final projects in other classes. We arrived at this schedule, which needed to be shifted from time to time but overall we were able to stick to it and achieve a final product we are all very proud of (with enough sleep).


Figure 6.1: Team workback schedule

One of the benefits of revisiting previous projects is that most of the hard work has already been done. The first thing we needed to do was see what data we can get from each of them and assess what else needed to be added or altered.


Figure 7.1: Left, Changing the Arduino Micro to Feather ESP32, Center Circuitry for DJ Console and Spheres. Right, Installing the Circuitry into the base of the box.
Figure 7.2: Center, Moving the circuits from breadboards into prototyping boards
Figure 7.3: Right, Adding LEDs to the puzzle

The DJ Console (Blocks) The puzzle used six switches with the help of copper tape underneath the shapes to complete the circuit. Also, it had a single LED light to indicate when any of the shapes were placed in their right position. Each shape corresponded to a specific sound that was then played through the P5 file.

We wanted to stick to the same principle, with a straightforward addition. We wanted to provide instantaneous feedback to the users upon any changed that were made, so instead of having only one LED, we placed six of them indicating how many blocks were active at each time. The system still used an Arduino micro that sent the data for the switches over serial connection to the P5 file. The data was then sent to PubNub so that the display system could use them.

The Sphere The ball used an Arduino Micro, an Adafruit Orientation Sensor, a LED strip and a small speaker. It used to make noise whenever it was to stable asking people to move it. We didn’t want the device to play any sounds anymore, we only wanted it to send the orientation data to PubNub. To do that, we got rid of the speaker and changed the Arduino Micro for a Feather ESP32 board. The board read the data from the orientation sensor and send it to PubNub. To provide real-time feedback to the user, the LED Strip would show some light whenever the ball was shaken.

The Center Display The display used an Arduino micro, a LED strip and nine switches made of copper tapes. The biggest issue with this problem was the need for copper tapes under shoes to complete the circuit. So, we got rid of the tapes and only used the design as a display. We added two extra LED strips to the display to make the experience much better.
The P5 read the data that was sent from the two balls and the puzzle and based on their configuration played the track that was associated with them. The data then sent to the Arduino micro over the serial connection to control the 3 LED Strips. The primary LED Strip was focused on the puzzle. If any of the keys were placed the LED strip would flash a green colour every 2 seconds; else it would flash a white light. The other 2 LED Strips each were related to a specific ball. The strips would flash the same colour as the ball that was shaken.


Figure 8: The team testings of the units

Sound and Design
The sound was the most critical piece of the experience for us. Since none of us have worked with music before we were most concerned about how the experience would come alive without a high quality sound output. Instead of making any guesses we turned to Adam Tindale who has been working with sound for the last three decades.

Our meeting was extremely productive and the most important lesson from it was the difference between creating a musical experience and a musical instrument. While creating a musical instrument you have to have a very deep understanding of the instrument, how it works and what sounds it can produce. The audience for such experiences are usually musicians with a similar knowledge. We found a relevant case study that proved this and we knew that this is not the experience we wanted to create.


Figure 9.1: Left, Cave of sounds, a musical experience
Figure 9.2: Right, Color cord – a technological musical instrument

We wanted to design an experience that made it easy to play with music, and could empower users of all experiences to create music of their own. While learning how to use musical instruments is a difficult task, and requires countless hours of disciplined practice, how might we do the opposite and create something that is inclusive, easy to use, and engaging at the same time. We needed a total of 8 sounds, six sounds for the DJ console (puzzle blocks) that set the main track and 2 accent sounds for each of the spheres that are triggered upon shaking.

We began our search for sounds online, with royalty free sounds available to use. We even tried working with Ableton and Garageband to see if any sounds would work together and create a synchronized soundtrack. But nothing that was available online was good enough, and since none of us had prior sound making experience we turned to our friends to collaborate with us on this.

Anish Sood is a renowned DJ, songwriter and music producer based in Goa, India. The genre’s he focuses on are EDM, House, Techno and Electro House. These felt like the right fit for our experience. We did a call together and briefed him in detail about the project. We wanted a track that was upbeat and yet soothing, and not monotonous to listen to. We took inspiration from the artist Kygo to describe the kind of sounds we wanted to produce. We also shared with Anish many pictures and videos of the parts of the experience and our vision for it. He was extremely receptive and put together a beautiful track for us within 24 hours of our call. He created six sounds on the DJ console that were divided between base sounds and overlapping instrumental and vocal sounds. He also sent us the master track so we knew what it would all sound like when it came together.

Playlist for the DJ Console:

For the spheres we wanted to find sounds that accentuated the base track from the console well. After a mini-brainstorm we shortlisted on a tambourine and a gong for the spheres.

Playlist for the Spheres:


Our fabrication process was smooth and streamlined. The following steps were part of the process:

The DJ Console (Blocks) We already had the base for the DJ console in place from Experiment 3. This included the puzzle itself, a base box for it and a single LED light to indicate if the device has been activated. In order to convert the design from a kid toy to something more mature, we decided to spray paint its colourful keys to a simple black and white design. We also had to add 5 more holes for additional LEDs feedback, and one for the connecting cable. While presenting we used a plinth that housed the Laptop underneath.


Figure 10.1: Left, drilling holes for LED lights into box
Figure 10.2: Center, Adding circuitry into box
Figure 10.3: Right, Spray painting shapes for box

The Sphere The fabrication process for the spheres were already done in Experiment 2.The only thing that was required to be changed was the circuit, and addition of a battery holder for the LED Strips so that they could be run for more than 3 hours.

The Center Display We decided to stick with the same object that was made for Experiment 3. The only thing that needed to be changed was to remove the extra Ultrasonic sensors from the box. We added a base to the design so that we could glue down the three cylinders that were to hold the three LED Strips. We also added a back panel to the design so that the LED Strips would be invisible when the device was off.


Figure 11.1: Left, adding more LEDs to original circuit created for the Kid’s Puzzler project
Figure 11.2: Center left, rewiring new and improved DJ console
Figure 11.3: Right, April making alterations and rewiring to the original display unit used in the Urchestra project


Figure 12.1: Left, Final project layout
Figure 12.2: Center, Fine tuning the blocks and sphere
Figure 12.3: Right, Fine tuning the center display

Final Fritzing Diagrams


Figure 13: The final circuit for the hamster balls


Figure 14: The final circuit for the Blocks (DJ Console)


Figure 15: The final circuit for the center display

Presentation & Show


Figure 16.1: Left, Final floor plan of Sound Synthesis
Figure 16.2: Right, Instructional signs placed on plinth under each interactive device

For the final show, we wanted to make sure the connection between the three pieces were clear and the users know what each of the pieces did. To do that, a clean installation of the work was crucial. We placed all the objects in a corner, where they could see the display center from each of the stations. We used plinths of the same height, and printed short instructions on what to do with each piece to make sure the user is clear on his/her role in the experience. We also printed matching ID cards and wore black and white – to look like a team at the exhibit.

An issue we had to deal with was to make sure the web browser for our display unit was refreshed every now and then as the large quantity of data sent to it made it crash if it was opened for a long time. We made sure that at least one person was at the station at all time to make sure nothing goes wrong.

We received very positive feedback on the project. People were very interested in how easy it was for them to act as a DJ and play with the sounds without having to worry about the pace of each track and how to synchronize them. Kids especially enjoyed the experience because they were used to the puzzle and the games and they really liked to be in charge of what is being played. Other people really enjoyed the experience because of the unusual interface for the music. They liked how simple it was to control and how little work did they have to do to get good sounds out of the system. They also appreciated how instantaneous the feedback is with the interaction. One thing that they felt that could be improved was to add more tracks and give the users ability to choose which track is for each piece.


As a team, we really hit our stride with this project. Since we all enjoyed working together so much during project 4 we thought we would go out with a bang together in project 5. The 3 of us each brought something different to the table and we found ways to utilize each team member’s strength. Omid not only spearheaded the coding but he is also extremely patient and slowed down his process so we could all work to understand the code of each device and troubleshoot any errors. Veda is extremely detailed in her design approach. It’s not enough for it to just look good, she makes sure each design is functional and user friendly, in every detail. April brought to the table her professional experience with meticulous project management, scoping and planning, graphical design and human centered thinking. Her skill set with fabrication and printing methods was also a blessing.

One of the most important lessons for us was to scope realistically, and leave a safety margin for debugging and troubleshooting. We also made sure to give ourselves enough time to iron out all the details for the actual presentation and setup.

After all the hard work we were able to achieve something that works beyond the level of a basic prototype. Hamster balls were dropped and the system crashed but everything was up and running without anyone at the party noticing. We are extremely proud of the final product and still can’t believe how well it turned out. If this project was ever to be scaled up it would require more stable software and possibly custom microcontrollers but for a 2 week student project, we are very proud.


Figure 17.1: Left, April and Veda rocking out at the final show
Figure 17.2: Right, Veda continues to rock, While Omid makes sure everything is under control

(n.d.). Retrieved from
(n.d.). Retrieved from
Cave of Sounds. (n.d.). Retrieved from
Romano, Z. (2014, May 22). A tangible orchestra one can walk through and play with others. Retrieved from
Schoen, M. (n.d.). Color Chord. Retrieved from
Tangible Orchestra – Walking through the music. (2014, June 03). Retrieved from