Compact Tones

Workshop #3: Soma Aesthetics & Bio-Feedback
Compact Tones
Olivia Prior 

Concept

Compact Tones is a compact mirror that responds to the user’s stress levels. The mirror gently hums when left alone and is activated by being held by the user’s touch. The mirror responds to the moisture on the user’s palms and correlates this to the tone emitting tone. The tone changes every five seconds unless the user is in extreme duress. If this is the case, then the tone will repeatedly alter until placed down. This device gives space and reflection through audio to bring attention and presence to the act of gazing at oneself in a mirror for an extended period.

Objective

With this assignment, my goal was the create a self-reflexive experience on adjusting and looking at yourself in front of a mirror. I wanted to create a relationship with the mirror that is a non-visual experience to reflect on the act of engaging in an activity that was purely visual. The use of the compact mirror is to reflect the one on one relationship that we have with our own bodies. This project aims to highlight the act of habitually monitoring our own bodies and how one may use appearance as a coping mechanism when they are stressed.

The range of the tones was selected to avoid connotations of irritation when the tone is too high or apathy if the tone is not present. The mirror is always gently humming, and the pitch does not exceed too high of a tone. This does not dictate or prescribe any standard of a norm as the tone is always changing slightly when by itself. When the mirror detects the user’s touch it alters to a chirp, as if it were having a conversation with the user. This allows the user to be in full control of the device and their part in the conversation, and motivation in using the device.

Workshop notes
Workshop notes

Process

For this project, I chose to use galvanic skin response as a method of bio-feedback. I chose this method because I wanted to measure the activity of someone holding a contact mirror.

My first step was to test out the technique myself. I took two pieces of aluminum foil and taped them around my fingers to see if I could get a measure. I found at first that I was not getting a drastic change in numbers, but the more I tried I noticed my readings were increasing. This was an interesting experience as I was visually seeing the change through the readings as I was constructing the piece.

Initial investigation of the sensor.
Initial investigation of the sensor.

My next step was to visualize how the aluminum foil would be placed on the mirror. As I needed two detached pieces of aluminum I decided to place the foil on either side of the packet. For the speaker, I decided to place it on the bottom of the compact so that the emitting tones would not be as blaring.

Diagram of the compact mirror being held.
Diagram of the compact mirror being held.
Top view of the compact mirror assembly.
Top view of the compact mirror assembly.
Bottom view of the compact mirror assembly.
Bottom view of the compact mirror assembly.

After testing and sketching, I started to assemble my piece together. I cut out two pieces of aluminum foil roughly the size of each side of the compact mirror. I used electrical tape the secure the pieces down. I left two slots open on either side to allow for the alligator clips to clip into easily.

Materials required for assembly of the sensor.
Materials required for assembly of the sensor.

Video of the assembly of the compact mirror

I tested out the values with the compact. Similar to my first experience, I found that my readings were not significant until after a few times when my hands were actively moving and producing sweat.

I then connected the speaker to the circuit and added in tones. Initially, I created an array with a list of tones that were in the order of a musical scale from low C to a high C. I did this so that I would have any obnoxious tones that would be distracting to the experience of the mirror. I then took the values of the compact mirror and mapped them to the length of the array. The outcome of the mapping would be an integer that would then be used to indicate what value of the array would be the emitting tone.

Initially, the range of tones was distracting. When untouched, the mirror would emit a very low buzz, and then when activated the pitch would starkly change to a high whining tone.  I then mapped the tones to go from a low to a mid-range pitch so that the interaction would be more musical and smooth.

My next step was to include a time aspect to the piece. I did not want the compact mirror to instantly respond to palm because that would make the compact mirror more or a musical instrument rather than a tool for slower reflection.  I chose to code the compact mirror to take into account the sensor reading in correlation to the time spent holding the mirror. For testing purposes, I chose five seconds as a time measure. If the sensor value is over a certain threshold, and a certain amount of time passes (five seconds) then the tone scale would increase as a response. Once put down the tone would then go back to a lower tone.

Arduino code for the compact mirror and GSR sensor
Arduino code for the compact mirror and GSR sensor

Demo of the compact mirror responding to being touched.

Something I discovered as I was testing was that if the compact mirror was left by itself untouched, the tone would change every five-second increment. This was interesting and I chose to leave this as it made the experience of the tone changing when picking up the device a more natural and less judgemental interaction.

Another discovery I noticed when testing was that once I removed my hand from the device the tones would “wind down” in the scale in quick succession. Once again, it seemed like it heightened the natural interaction of human to mirror and decided to leave the code untouched.

Challenges & Outcomes

The main challenge of this project was thinking of how to create a non-judgemental response when holding a compact mirror. Having a reaction to looking yourself in the mirror could be a very loaded action: it could be immediately judgemental, it could be stressful, or it could a deterrent from the action. My initial thought was to have LED lights to respond to the proximity of being in front of a mirror, but I thought that the light would interfere too much with the act of looking at your reflection. I ended up playing around with tone as an alternative but was also concerned with the connotations of tones. Such as: Would it sound too much like an alarm? Would it turn into an instrument rather than create a reflective space? These were my main concerns pursuing this output.

I found that I did not a steady data set to work with using the aluminum foil. I thought that I would have a more gradual input of data, but it seemed fairly binary as I was working with the material. I also suspected the readings to be closer to 0 when the mirror was left alone but found that it was steadily around 200. Rather than calibrating the data set, I chose the threshold for the sensor to reflect a very high level of moisture on the skin (900 out of 1023), and for the lower inputs to be mapped to the tones so there was always the “hum”.

I found that using a found object to be an effective foundation for this project. Placing the aluminum foil on the mirror and using alligator clips to connect it the breadboard worked well for testing. Beyond testing, this would be inefficient for a portable item. If I were to make a future rendition having all of the components together would be problematic. The aluminum foil on the compact mirror is flimsy and only attached by the edges. I found that the foil ripped easily when the mirror was moved around extensively. As well, the foil covers all of the surfaces. This would be problematic for attaching any microprocessors or protoboards as they would most likely to be attached to one of those surfaces. The components would either have to be wireless or the foil would have to be connected to accommodate to the hardware.

In a future iteration, I would use recorded sounds rather than tones. I think the tones are playful but still come across as distracting and stark. If there were softer sounds that were less removed from the context of alarms the soma aesthetics of the interaction would give more space for reflection.

Overall, I think that this project could be elevated to be used beyond compact mirrors. The inputs from the galvanic skin response sensors mapped to sounds could be applied onto many other items. The act of physical touch mapped to an ephemeral output such as sound creates space for reflection on many other interactions such as using a pen or typing on a keyboard. Galvanic skin response as bio-feedback is interesting because it can incorporate time – the data inputs can change over the time of the interaction. This project is only a small experiment in the greater potential of using the galvanic skin response in combination with sound as an output.

References and Research 

Galvanic Skin Response Tutorial 

Basic Tones Code for Speaker Output

Galvanic Skin Response Explained 

Leave a Reply