Run Adorably Sock

Workshop #1 Notes

“Run Adorably Sock”

By: Olivia Prior

Strategy + Goal

My prompt for this project was to create a run adorably sock-. I knew that initially I would not be able to fabricate an entire sock. Instead, to start, I wanted to create an interactive attachment that could be placed onto a sock. The attachment would be activated by the press of the user’s heel down onto the ground in order to track the wearer’s running movement. For the adverb side of the experiment, I wanted to create a cute cat face on the outside of the ankle that would light up when the button was pressed. Both together would create a bespoke attachment that lets the sock wearer run adorably.

Figure 1: Initial sketch of my prompt "Run Adorably Sock"
Figure 1: Initial sketch of my prompt “Run Adorably Sock”

From the experiments in class, I chose two different techniques. First, the knitted button and second felting and conductive fibres. The knitted button made the most sense to me as I essentially wanted an open circuit that closed when the heel pressed down. I chose the felting for the sturdiness of the material. If this was a device that was placed on the bottom of the foot, I needed the circuit to be sturdy and bound securely into the attachment material. I chose to execute the “adorably” part of the prompt by using un-felted fibres as the whiskers of the cat to connect the circuit.


My original idea was to create a circuit that looped around the entire length of the foot, along the sole to the top of the foot and back past the heel. I initially traced my entire foot onto felt, but as I started to felt my fibres into the material I realized I had not fully thought through the connections. Looping around the entire foot would use a lot of excess material that was not required. Upon this realization, I took apart the felted fibres from the foot and drew some more thorough diagrams of my connections.

Figure 2: Full sole of the foot with the start of the circuit felted through to the tops of the toes.
Figure 2: Full sole of the foot with the start of the circuit felted through to the tops of the toes.

I diagramed my connections to wrap around the heel and ankle of the foot. I then crafted paper sensors to understand how I needed to attach all of my sensors together.

Figure 3: Bottom view of diagram, layer 1
Figure 3: Bottom view of the sock, layer 1 showing the felted circuit
Figure 3.2: Bottom view of the sock, layer 2 showing the first piece of knitted material.
Figure 4: Bottom view of the sock, layer 2 showing the first piece of knitted material.
Figure 5: Bottom view of the sock, layer 3 showing the first piece of knitted material with conductive thread .
Figure 5: Bottom view of the sock, layer 3 showing the first piece of knitted material with conductive thread.


Figure 6: Heel/Back view of the sock, showing felted circuit.
Figure 6: Heel/Back view of the sock, showing felted circuit.
Figure 7: Side 1 view of the sock, showing the "adorable" cat with the LED eyes and conductive fibre whiskers
Figure 7: Side 1 view of the sock, showing the “adorable” cat with the LED eyes and conductive fibre whiskers
Figure 8: Side 2 showing the battery attached to the sock.
Figure 8: Side 2 showing the battery attached to the sock.

The only part that I had less certainty about were both of the LED lights for the cat eyes. I chose to experiment and include them in this experimentation for my own personal research.

As I took apart the fibres on my first iteration of the full sole. I noticed that there were lots of stray fibres poking through. I was going to reuse that specific piece of felt but I was unsure if the stray fibres would contaminate my new circuit.

Figure 9: The back side of my initial iteration with lots of small fibres spread throughout the felt.
Figure 9: The back side of my initial iteration with lots of small fibres spread throughout the piece of felt.

I started to tear the fibres into pieces and then felt into the new heel attachment following my circuit diagram. The button would complete the gap in the circuit. The felted perpendicular lines were designed to give more surface area for the button to touch.

Figure: Felted the circuit to only the heel of the attachment.
Figure 10: Felted the circuit to only the heel of the attachment.

I took a break from felting and knitted my button sensors. I was excited that they were able to work just by pressing the pieces together. In my design, I did not need three knitted pieces, but rather two. I was going to use the felted circuit as the connecting part for the button. As I was knitting the conductive thread into the piece, I left gaps at the top and bottom of the knitted square because I wanted to be cautious of shorting my circuit. I was aware that the space on the heel I had allotted for the button was small and I did not want to have any risk of the button connecting to the other side of the heel circuit.

Figure 10: Two knitted pieces for the button; the first without conductive thread and the second with.
Figure 11: Two knitted pieces for the button; the first without conductive thread and the second with.

I tested the button using my testing tool to ensure that my loops were large enough for the knitted in the conductive thread on the first piece. To my surprise and contentment, it worked.

Video 1: Testing my knitted button using my testing tool 

I went back to felting and making the adorable cat with LED eyes. This process was challenging and frustrating. I had felt a piece of material in between the eyes to allow the first LED to end and the second LED to begin. Using the conductive fibres was challenging for this part; I had chosen them as the connections for the LEDs because I thought there would be a thick enough base for the wires of be able to stick into. I had also thought that I would be able to felt over top of the connecting part of the LEDs to secure the connection. In the end, I only was able to make the first LED light up briefly and could not confidently repeat the result.

Figure 11: The connections in the back of my cat were close together making for a messy circuit.
Figure 12: The connections in the back of my cat were close together making for a messy circuit.

I attached the cat face to the circuit and tested it using my testing tool. I was able to get satisfactory results of using the whiskers to “brush” along the felted circuit to pass the current through.

Video 2: Testing the fibres in my cat to see if they complete the circuit

I then sewed my knitted button onto my circuit. This I found challenging as I was not getting the bright consistent results I had with my testing tool. I placed my testing tool on either side of the button and was getting dim results. The electricity was passing through, but my connection was not strong enough. I believe this was due to my design of the large gap. In a future iteration, I would need to sew the knitted piece that contained the conductive thread to the circuit to enforce a stronger connection.

Video 3: Testing the knitted button sewn into the circuit.

The end result: my piece could be clipped to the base of the foot and to the ankle to act as a sock that helps someone run adorably.

Figure 13: Full circuit of the attachment
Figure 13: Full circuit of the attachment


This assignment felt very similar to my first encounters with jumper wires and a breadboard. The first time I was following along in Creation and Computation my circuits were not colour coded or organized. As I was going through that assignment, I was thinking about how in the future I would be much more intentional with my stitches and keeping a clean working space. This is reflected in the way I aim to set up my circuits now; I am very intentional with ensuring I can see everything that is happening. I found the best example of frustration caused by straying from this technique when felting the fibres. Initially, I was felting away not really considering how the fibres on the other end would interact. As I started testing, I consistently went back and ensured that my working space was clean. This was a huge hassle and in the future I would use felt to block out certain parts of the felting area to ensure a contamination free zone.

I also re-learned the importance of sketching out my circuit and pursuing the project with intention. I think the connotations of the materials lends itself to a crafting mindset. It is hard to re-wire those instinctual urges such as; I will cut away the felt; or, I can use glue to repair that later. What helped the most was making my components out of paper first and then laying them down to understand my prototype. This allowed me to consider dimensions, connections, and what materials I would need to use.

Through my development, I found myself asking the question: “how would one actually wear this?” rather than “how would one construct this?” My first concern was about construction, but as I was developing the circuit I found myself placing the attachment on my foot and rethinking my design for wearable use. In my next project, I think this will be one of the questions in the forefront of my mind: how do I include the body aspect rather than just focus on the functionality?

Information sources:

I followed the tutorials that were offered in the class: the knitting tutorial and the felting tutorial for constructing my circuits. I looked at the website How to Get What You Want to view some LED light attachments for inspiration but I chose to experiment with connecting to straight into the felted fibres instead.

Next Steps:

  • Include buttonholes and a sock to attach the piece together.
  • Consider using conductive fabric or thread to construct the circuit rather than felting, as felting is messy in narrow spaces.
  • One could knit an entire sock with this circuit in it, rather than making an attachment.
  • Fully attach a battery to the circuit rather than a quick stitch for security.
  • Make a matching pair for the sock.


Workshop Notes #1_A watch for bungee jumpers_Erman

My goal was to design a watch which can help to relax a person who wants to bungee jump. This watch will be worn on a hand (especially on the left hand) and squeezed to be relaxed a little bit.

My keywords were: A watch- Bungee jumping – Nervously

About Bungee jumping:

It is an activity that involves jumping from a tall structure while connected to a large elastic cord. The tall structure is usually a fixed object, such as a building, bridge or crane. When the person jumps, the cord stretches and the jumper flies upwards again as the cord recoils and continues to oscillate up and down until all the kinetic energy is dissipated.

Although it looks like fun, it is also a very difficult activity to accomplish- especially for those who have fear of heights. Some of them who are getting ready to jump, cannot overcome their anxiety and turn back to their safety zones and step onto the ground again.

I wanted to help those who are getting ready to jump by designing a watch/hand band. It is very simple, but maybe an effective product to relax people and release their nerves.

Why hands:

I wanted to design a product for hands, especially for the left hand. I knew that there are acupressure points on hands (including fingers and palms) to relax someone. I found that left palm includes heart, lungs, stomach, and adrenal (see image 1).


Image 1: Acupressure points in palms

A user of this product may put some pressure over there areas in the palm by squeezing the watch/hand band. If s/he presses and complete the circuit, a led lights up. S/he may play with it by lights it up and relaxes; or if s/he is very nervous s/he can squeeze it hard that it just lights up constantly. S/he also may not need to use it, if s/he feels fine about jumping of is concentrated on jumping.

Even if there were no acupressure points in palms, we feel better if we hold something in our hands, squeezing our hands, or shaking them. I am giving an interactive tool to these people to hold on, taking it with their journey with.


This watch/band is worn on hands and covers the palm, back of the hand. It is slotted over the thumb and wrapped around the hand.  If the two ends of the band touch each other circuit completes and the led lights up. It is activated in the palm. The user has to squeeze these ends in order to make them touch each other. You can watch the video here about its usage and how it works.


Image 2: Design features and views

The slot and bands are wide and long enough to adjust the product to users’ various hand sizes. I decided the dimensions considering in hand size and comfort of usage.  You can see the dimensions below.


Image 3: Dimensions and views

A battery is also located in the palm and it is covered with another knitted layer. Led is located the outer surface of the band, where it can be seen easily. You can see the led and how the watch is worn on a hand below.


Image 4: How it is worn and used

I have complete your e-textile controller/ badge using 2 techniques. One is knitting other is French Knitting.  French knitting was used for the sensor, and the knitting was used for the circuit. It controls/ turns on an LED and battery to demonstrate that the circuit functions.

Conclusion: A watch/hand band may be used to relax someone who wants to bungee jump.


I started my project with sketches. You can see the initial sketches of my e-textile sensor/controllers.


Two techniques I chose are French knitting and knitting.


Starting the first loop. After a few trials, I decided to make 10 loops in a row. I also added conductive thread into the yarn.


After reaching a square shape, I divided the loops into two groups. One group included six and other group included four loops. I tied the four loops with a wire not to lose them. I also stop using conductive thread at that step. Then, I knitted the six loops to individual size.


I tied the six loops with a wire and started knitting four loops. I knitted them till reaching the same length with 6 loops.

img_3228 img_3229

I started knitting two groups together and combined the rows together.


I added conductive thread into the yard again and knitted the other end of the band with it.

img_3236 img_3238

I knitted French knitting till I have enough length of it to make a button.


I create a circle on the one of the end of the cord.


I saw the circular French knitting on to the body with a regular thread.


I sewed snaps for the LED.


I also sewed snaps for the battery and placed the battery case on.


I disconnected the snaps from each other and connected them with the rest of the circuit.


I also connected two ends of the watch/band with the conductive thread.


I knitted another square piece to cover the battery and create another layer between palm and the device.


I sewed the new layer and covered the battery. It looks like a pocket for the battery.


I also knitted and sewed a small piece onto the end of the band where fingers are located. I thought it can be a sign of the button and shows the real button underneath.

How it works:


  • I learned how to make sensors and push button.
  • I learned and practice two kinds of knitting.
  • I practiced how to complete a circuit.
  • I learned another method for quick and effective brainstorming.
  • I placed the batter after knitting and the area where I located the battery was on the conductive thread. It took some time to clean the threads between the snap because it looped a lot between snaps. I recommend to decide where you locate the components before starting, otherwise, you can strive unnecessarily.

Information sources: I used this video to learn how to end knitting of the last row.

Next steps:

  • See other products of my classmates done;
  • Get feedback from instructors;
  • Learn if I need to learn and apply Arduino;
  • Learn different knitting techniques, and try with different patterns, colors;
  • Add more LEDs;
  • Make the watch/band wearable.






The Relaxed Runner

(A helpful post for left-handed knitters)

Image result for runner city

Running, as a form of exercise can help reduce anxiety and stress, but running in urban areas can often be a source of stress as well. Loud honking cars, pollution, careless pedestrians, and unexpected weather conditions can weigh a runner down. The Relaxed Runner is a set of wearable devices aimed at helping runners address some of the stressful situations they encounter on the go. A controller, worn on the runner’s fingers is connected to a scarf around the runner’s neck and triggers specific features. The scarf contains a speaker, to help cut noise when needed, LED lights to help runners signal pedestrians and traffic (especially when running in the dark), and the occasional mist spray for some hydration. For this workshop, the focus was on building a prototype for the controller.



The Relaxed Runners controller is worn as a single device with two controlling functions within it.

Controller 1: Knitted finger socks
Controller 2: Woven band

Both controllers function as push buttons, that activate upon circuit completion, i.e. a combination of the power and ground lines. In the case of the finger socks, the mechanism is activated when the user joins both his fingers together. For the woven band, a user has to pinch two ends of the band together, with their other hand to activate the circuit. Both mechanisms work easily and are focused at users who are on the move with minimum interference.

A thin scarf work on the neck is aimed at giving the runner a sense of security and not obstructing their movement. The functionality on the scarf works with the LED Lights and the mist spray. These are the most critical triggers for the controllers. The speaker can be activated before the run depending on the wearer’s decision to wear headphones or not.


The idea for this controller was the outcome of an in-class exercise. We were asked to individually write on word cards, names of different types of clothing, verbs, and adverbs. After that, we had to combine these cards in groups of four and pick up random combinations in ballots. Then we had to sketch eight ideas each based on these combinations, and pick our favourite. Some of the combinations I got were softly-reading-necklace and exciting-gymanstics-headband. I chose a DESTRESSING – JOGGING – SCARF, and that formed the base of my idea.



Given that building a high fidelity prototype for a scarf is unachievable in a short period is unrealistic, I opted to build the controller instead. The fact that this concept is targeted towards runners, any wearable device has to be light, easy to wear and extremely comfortable. It cannot interfere with the runner’s movement. With this in mind, I moved into execution.

Building the Prototype:



  1. DIY E-Textile tester  See how to make
  2. Basic sewing kit (Needle, Thread, Scissors)
  3. For Knitting the finger socks:
  • A roll of yarn, any colour will do
  • Conductive Thread
  • Knitting needles (Size 10 preferably or smaller)
  1. For Weaving the band:
  • Cardboard 6 inches X 10 inches approx. (reusing this is fine, it’s only a frame. I rescued a flap from an Amazon delivery box)
  • A roll of yarn
  • A plastic fork / any fork without sharp edges
  • Weaving needle (If you don’t have one use a thin stick instead)

Knitting Process:

Knitting for lefties can be very challenging, as everything is inverse. After a substantial amount of trial and error, I found that Bill Souza’s Youtube channel is a great place to learn.

The knitting process is divided into three parts for beginners:
Cast on: Learn here
Knit Stitch: Learn here
Bind off: Learn here

As a first timer, I began the knitting process with a few sample patches. This experiment helped me get comfortable with the technique, the size of needles and the nature of knitting I wanted to execute. Usually, beginners are recommended thick needles because it makes the process easier to learn, but due to the tight timeline and nature of my prototype (it had to look good and fit on a finger), I consciously opted for thin needles. This decision worked in my favour because it gave me the right size of knit stitch, and the correct tension I needed for it to fit perfectly on any finger size.

NOTE: Knitting requires a stitch count. I used a twelve-stitch count to fit the height of the more extended finger (middle finger) and an eight-stitch count for the thumb.



I began the knitting process just with yarn and added the conductive thread halfway through. I wanted only a particular patch of the finger sock to be conductive, so the runner doesn’t accidentally trigger anything while moving. I just knotted the conductive thread onto the yarn and kept knitting. Once the thread is added, it might feel rougher and make the knitting process slightly harder, but continue as planned.

CAUTION; The conductive thread can tangle easily, and knots cannot be undone. Avoid cutting it off the roll you are working from and also avoid taking too much out at once.


Once the conductive patch is complete, add another knot, cut off the edge and continue working with the yarn. Once completed, proceed with a bind off and trim off all extra thread.

Once the patch is ready, hold the two edges together to form a cylinder, and insert a sponge in the middle to help maintain the shape of the sock. Use a regular needle and thread (preferably in a similar colour) to sew the two edges of the patch together to form the sock. Trim off all extra thread. Complete both fingers.


Weaving Process:

Once both the finger socks are ready, proceed to weave the band that joins the two together and also works as a controller. Start by making six same size incisions along the vertical edges of the cardboard patch. After that tie a knot at the beginning of your yarn and align it vertically along the incisions. The front should have them laid down vertically, and the back should have them laid out horizontally (pictures show how). Conclude this part with another knot at the end of the yarn and trim off any extras.

Learn how to DIY weave with Christina Reeves


Next, cut a long piece of yarn and tie it to your needle. Begin moving perpendicularly to the vertical threads in an alternate pattern across threads and rows (pictures show how). Leave approx 1 inch on each end before you start the horizontal weave. Once a row ends move back in the opposite direction, and continue to do so till the end of the patch. Use the fork to tighten each row while weaving. Linearly make multiple knots along the ends and trim off any extras.


Once the weave is complete proceed to sew on the conductive thread onto it. Sew two same size patches closer to the ends of the patch, that can make contact with ease. You can choose any pattern you like for this.



Once the three components are ready, sow the edges of the patch to the bottom end of the finger socks ensuring that the conductive areas on the socks align on the inside of the hand, and the patch outside (See picture).



To test the finger socks, connect the edges of conductive areas to the edges of your e-textile tester with alligator clips. Joining both fingers should trigger the LED.

To test the band, connect the edges of the conductive patches to the edges of your e-textile tester with alligator clips. Joining both patches should trigger the LED.


NOTE: Ensure that your battery is in the right poles prior to testing. This often causes the test to fail.


Before this workshop, I had never knitted or woven in my life. This was a fascinating new world to venture into, and I’m so glad that I had the opportunity to learn both techniques. While felting also seemed like a good skill to acquire, because weaving and knitting both were more complex an technically demanding I wanted to use this opportunity to learn both. While the weaving process is agnostic to the hand of its user, knitting was an extremely challenging start for me as a left-hander. With limited resources available online it took me a few days to grasp the technique accurately, and that was the most challenging aspect of this project for me. Designing the controllers was not so much of an issue as much as mastering the technique with high-quality output. I almost gave up after day two, but I knew that this was the only opportunity I would have to pick up the skill, so I pushed myself, and I am pleased with the outcome.
Next steps :

I would improve the quality of the sewing on the weave and perhaps make the band longer, so there’s more space to play. I would also like to try creating a more complex controller with all five fingers, using each finger to trigger a different kind of reaction.

I would create a wrist band for my Arduino and attach it to the finger controllers, to improve the functionality of the prototype.



Bill Souza – Yarn Crafts 4 Lefties

Christina Reeves – DIR Carboard Loom



French Knitted Necklace and Button

Strategy:  I set out to create a soothing melody necklace that plays a lullaby when you push the pendant.


Originally I had planned this for ttc commuters but commuters usually use earphones, reading or other ways to separate themselves from the chaos around them when it comes to transit.

Therefore, after the mix and mingle word exercise I thought why not make a necklace that soothes the soul and those around them. Why not make a soothing lullaby necklace? This wearable would be great for new moms and their newborns when trying to get them to sleep putting both parties at ease.

For first initial steps, I used the french knitting technique followed by the conductive button approach. The front part of the necklace’s medallion would act as a trigger, so when closed the necklace would lit up and play a lullaby through the speaker.

  • Documentation:

I started sketching out my design and trying to figure out the appropriate circuits:

img_2769                   img_2753-2

I made two french knitted chains to connect to the battery and LED :

French Knitting for the first time!
French Knitting for the first time!
Two french knitted conductive chains. The white chain is connected to a button that connects to the other side of the LED.

Then I decided to just test my circuit on the left with an LED using a push button technique.

I knitted my button with just conductive thread.
It was bulgy and messy…
Then it didn't work :(
Then it didn’t work :( all :( all :(

The conductive button technique wasn’t working for me because my circuit based on the picture above, I was clearly connecting my negative (blue french knit chain), with the power side of my power bracelet. However even though that was the case, the design at this stage was messy and I didn’t like it.

So I retreated to using the button technique with just the button clips to complete the circuit.

The knit conductive button has been replaced with just a sew on button,
The knit conductive button has been replaced with just a sew on button.
It works!
It works!
  • Insights: Since the other techniques didn’t seem to suit my necklace idea, I didn’t focus on experimenting and trying out two techniques as required. I focused solely on the functionality of a on and off switch based necklace. The circuit itself, was very very simple. This isn’t bad for a first start but I did miss out on trying and experimenting other techniques such as the pinch or conductive button methods. (and my poor power battery is no more because of this experiment…)
  • Information sources: I didn’t use any external sources other than the tutorials given in class.

Next Steps

I’d like to try out other techniques and see where exciting outputs I can make or conduct with this.

Making a pinch sensor for the fingers that activates the light when it touches the medallion could be a next step I’d like to explore.

I would try and make this much neater  incorporate actual sound in the next phase.

Back Pack Fabric Light and Futuristic Pants


These 2 creations are utilized using 2 different techniques. The 2 techniques explored are felting and crochet. My Intention with this project was to create something possible  and  futuristic. For the back pack light, I’m constantly looking for things in my bag and wanted to create a perfectly fitted insert. The button used to activate the light is crocheted with conductive thread. It is placed at the top of the bag where you naturally apply pressure when holding the opening of your bag. The second construct evolved from the ideation of what the most comfortable pants would look like. I discerned they would be electronic and could be used as a single piece of clothing that came all the way up to your collarbone.


In my first draft of brainstorming, I didn’t really veer from my original ideation. My process was mostly iterating on my original design and continuing with the exploration of the 2 techniques felting and crocheting with conductive thread.





While crocheting the switch (button) that activates the LED light, I had to reconfigure the map of conductive thread. The distance from the  battery to the LED was to extreme.  Initially I could  get the LED’s to turn on, but they were very dim and would not stay lit. I also doubled the batteries for each circuit. Each product had 2 -3 volt batteries attached for power.  This was the case for both projects. Incorporating an area of felting was a much more stable means of conduction for the 2nd project. I created a thick neat line of felting to close the circuit to initiate the LED on the pants.






If able to revisit this project at a later date I would like to expand on the fabric light and incorporate a lily pad. Making the product a little larger and brighter. Expanding on the brightness would increase visibility closer to the bottom of the backpack.. Connecting it to an outer design on the bag could be used for communication or sensing something harmful. Another variation could also be making the light as a matrix for images, messages. Through out this project I expanded on my use of e-textile buttons. This build allowed me to amplify my knowledge of trouble shooting with conductive thread. For example I discovered if I made circuits shorter or rethreaded some areas of the crocheted button I was able to redress the issue of closing the circuit more effectively. There are a vast amount of applications these fabric power switches could be applied to. They are definitely more effective when wieght and flexibility are the priority.


Deceptive Jumping Necklace

After a creative elicitation exercise involving mix-and-matching verbs, adverbs, and feelings, I sketched out a series of goofy designs.


Many of them were so goofy or so obtuse that when it came time to select one to pursue for this project, they had to be discarded by default. The one idea that I thought would be achievable based on the parameters of the assignment, and not so complex as to necessarily require a microcontroller, was the so-called Deceptive Jumping Necklace.


The Necklace would sit clasped on its wearer’s neck until, when it was most unexpected, it would unclasp and leap off. When expanding the design I imagined it held fast by a set of electromagnets controlled by a microcontroller hidden in the central pendant. This central pendant would also hold springs that would push the necklace away when it was activated. It was goofy, but it could be read as a piece of critical or dark design, which are design avenues I am interested in.


I had no practical experience with knitting. I had done some simple weaving before, but I wanted to learn to knit. Even at the time I felt that weaving would be more appropriate than knitting for this object, but I wanted to take the opportunity to push myself and learn something new. I planned to knit the body of the necklace and weave a small patch to serve as the mounting for the magnetic clasp.


It took me several false starts to get the hang of knitting. The first round of stitches that set up the first needle was simple enough, but the process and movements for the core stitching did not come easily. Furthermore, in my hubris, I had asked my instructor for small needles as I wished to knit something that would have the same stitch density as a weave. She warned me that large stitches would lead to larger loops which would be easier to knit, and she was right. The small loops were difficult to keep ordered and occasionally got very tight.

I had to stop and restart several times, but eventually, thanks to a very helpful YouTube video, I got it going.

While knitting, I decided that a necklace was the wrong form for the project. A bracelet would maintain the same kind of affordance as the necklace with respect to the critical design aspects, and would be a little simpler and faster to make. Also, I had by now decided to try to realize the project without a microcontroller, and a bracelet would be a better fit for an object that was just a swatch of knitted cloth.

As I knit, I attempted to include two lengths of conductive thread – one of the fourth stitch from the beginning, and one on the fourth stitch from the end. These will eventually become the wiring that keeps the clasp engaged.


The bracelet turned out well enough considering it was my first serious foray into knitting. For some reason – probably through missing or fouling up stitches – the finished knit has a distinct curvature to it, which works for a bracelet!


For the next step, I wove a swatch to serve as a place to anchor the clasp mechanism. I had done some weaving in workshops previously so this was familiar to me, and a YouTube video was a good refresher.


I tied off the cut portions of the weft and trimmed them down.



There is much more work to do. Having never knitted before, I spent a majority of the week getting comfortable with the process through trial and error. I understand now how to recognize a mistake and fix it right away, which I did not when I began. Mistakes I made early in the knit were deeply woven before I recognized what they were.

Furthermore, I settled on the initial design of the project before I truly understood the needs of it. Before this piece is completed I intend to re-imagine it so it can function without a microcontroller, and to utilize one of the fabric-based sensors. Perhaps I will eschew magnets altogether?

While I’m disappointed to not have a completed product I am excited to have discovered knitting, which I find fun and relaxing. Now that the hurdle of learning to knit has been overcome I’m looking forward to continuing exploring, and perhaps knitting myself a big fluffy scarf.

References & Resources

RJ Knits (2018, November 24). How to Knit: Easy for Beginners. Retrieved from

The Met (2016, March 11). #MetKids-Weave on a Mini Loom. Retrieved from

Pressure Activated E-Tie



Through the ideation activity, I end up choosing the concept created with the words (tie, hugging, suddenly). I proposed to design an e-tie that is a hug sensor that measures pressure and intensity of hugging with others.



Deep pressure hugs with partners, family and friends calm people and reduce stress and anxiety. A deep pressure hug would turn a light on or produce a melody on this e-tie. With this type of a tie we can use that information to understand how people approach each other in public or private

I created a push button sensor using knitting technique for creating this pressure activated accessory. I Also used French knitting technique to create a conductive cord for the circuit. Learning knitting skills wasn’t an easy task, it required a lot of patience and accuracy. I followed video tutorials to learn beginner steps. I challenged myself and I tried many samples and repeated and practiced it until I got the hang of it. I struggled with French knitting a lot more. I had to practice without the conductive thread because it was causing a lot of tangling and very tight stitches. Afterwards, knitting with the conductive thread became possible.


E-Tie design sketches



Knitting process

img_7630   img_7764

img_7767   img_7772

img_7781   img_7784


Completed knitted parts

img_7787  img_7790


Testing the circuit

img_7792   img_7793

img_7795   img_7796


Final Prototype

img_7798   img_7799



This experiment taught me not only knitting skills, but also how to knit a yarn with a conductive thread and treat them as one thread. I explored different knitting techniques to produce different kinds of stitches, some of them were successful and some weren’t, but this resulted in creating an ironic textured patterned tie design. I learned also how to connect a circuit through many trials and errors and that made me understand short circuits, cut or non-conductive ones, closed circuits, and positive and negative sides of a battery in relation to the LED light in order to light it up. It’s my first time to work with electronics and all this information and findings are new to me. I will definitely do more projects with electronics and sensors, and apply this knowledge to create interactive interior environments for my thesis projects.

Information sources: None

Next Steps:

I would like to take this designed wearable accessory further and make it interactive through computation. I propose that the wearer can be able to control the intensity of physical contact with others. They can set the ideal pressure for a hug, and then if the hugger exceeds that limit, a special sound would be produced informing the hugger that a too tight squeezing hug is becoming unpleasant, so they will loosen up or break free. The sensor allows the wearer to feel comfortable knowing that a limit has been set and they’re in control of it.

E-Textiles: Embedding a circuit into woven yarn and felt

Experiment by: April De Zen


For the purpose of this experiment, I created two conductive controllers using yarn, felt and some conductive textiles. The prototype created is a battery operated bracelet with a felt button which turns the lights on. This is my first try with e-textiles so I wasn’t really sure what to expect. I noticed through the process that without resistors controlling the flow of electricity it was very easy to burn out a battery which made the process more tricky then expected. Here was my journey creating and testing an e-textile.

Step 1: Materials & Tools

  • 1 roll of yarn
  • A piece of scrap cardboard
  • 1 roll of conductive thread
  • 1 roll of regular thread
  • Conductive felt
  • Regular felt
  • 1 piece of sheet felt
  • 1 3V round battery
  • 5 adafruit sequins LEDs
  • Sewing needles
  • 1 clean yellow sponge
  • 2 finger protectors
  • 1 felting needle

Step 2: Create Cardboard Loom


With the help of a tutorial from the weaving loom, I created a cardboard loom very quickly. I’ve never woven yarn before so I’m not sure how this holds up to a regular loom but I was really impressed how easy it was to make and how effective it was. It didn’t take mush time at all for create the loom and begin weaving. The pattern of a weave is very simple as well, under and over. The only issue I ran into was keeping the shape of the band. After a while I noticed that it was tapering in as I was weaving so I tried to loosen the yarn.

Step 3: Add conductive thread into weave


There needed to be two points of conductivity to flow electricity through the woven bracelet. Once I have about 3 centimetres woven I added the thread. I left some space without conductive thread because I will be adding a felt ball/button later and I don’t want it sitting directly on top the circuit. I pulled the conductive thread all the way to the other end of the loom and tucked it in at both ends to keep it still. Once that was complete, I continued the weave until I reached the desired length.

Step 4: Create felted ball with conductive felt for button


Creating the felted ball was an easy process but it is also very easy to poke yourself with the extremely sharp needle. Even with the finger protectors, I poked myself a few times. Go slow! Trust me on this. Since I was creating a button, I needed the conductive felt to be inside the ball so it would not trigger the bracelet until pressed. I started with laying the felt flat on the sponge (with the conductive piece on top) and started tapping the needle through. As I went I folded over the felt to create a ball and continued tapping the needle through. I made sure all the conductive felt stayed inside the ball while I was doing this.


Step 5: Add LEDs


This was my first time using these kinds of LEDs so I quickly tested them all to make sure they worked before I sowed them in. There was already two conductive threads running though the weave but I was worried it was not enough thread to seal the circuit. When it came to sowing in the LEDs, I kept a running line of thread through the positive line of lights and another running line through the negative line, making sure the 2 lines never touched. In the middle image you can see that I tucked the running line of conductive thread into the weave so it was hidden.

Step 6: Testing


When it came to testing I was successful with the felted ball but not so much with the LEDs that were sown into the woven bracelet. Out of five LEDs, I was only able to get one of them to light. It was confusing why only one worked so I decided to try some trouble-shooting to see where I went wrong.

Step 7: Trouble-shooting LEDs


Using the e-textile testing tool I created, I check the connections through out the bracelet. When placing the tested lightly on top of the bracelet it light up right away. Since I had already tested all the LEDs before the sowing, I was really confused as to why the others weren’t lighting. I loosened some parts of the weave to see what was happening with the connection points. It all seemed fine. I tried adding in some more conductive thread to strengthen the connection to the LED, no luck.

Step 8: Finishing


Even though I wasn’t able to see figure out why only one LED worked I still wanted to finish up the prototype to see if it all worked together. I tucked all the loose yarn from the weaving process into the woven bracelet and trimmed all the excess. It was starting to look like a finished piece. I added a felt battery pack to the back of the bracelet and snapped it in place. Again, only one LED lit. Then I added in the felt ball to see of it would trigger the light. I inserted the positive thread into one side of the felt ball and the negative thread into the other side making sure they didn’t touch each other. Unfortunately, it sucked all the power from my battery almost immediately. After replacing the battery I tried again but I noticed that when the felt ball was connected it didn’t turn the light off. The light stayed on and then I pressed the felt ball it would turn the light off. This was the opposite effect that I wanted and it would drain my battery very quickly.

Creating a cardboard loom:

Felting for Beginners:

Plus class tutorials and instruction

Smart Belt

The Smart Belt is the ideal belt for people who always find the time to have a nice meal even on a busy day. When you had too much food, and you fill like you need to make your belt a bit more loose to have that last bite, you don’t need to worry about it anymore. The moment the belt detect a bit of a force stretching it, the belt will automatically add to its length.




My goal was to design a relaxing belt that is useful for eating. I thought about my personal experience with belts, and one thing that consistently came to my mind was how I wish my belt could sometimes automatically change its size. As a foot lover, I felt that this would be an ideal product.

Initially, I wanted to create a long rectangular shape pompom, so that by pulling on the two sides of it, the resistance of it would decrease and would allow more current to pass through it.

After my first attempt at creating a small pompom, I realized how time-consuming this would be, so I decided to weave the belt. I created two long rectangular shape belt, place them on top of each other with a small amount of overlap, added a pompom between the overlapping area so that if you pull on the two sides of the belt, the pompom will allow current to pass through it allowing the mechanism to be activated.



After the Crazy eights exercise the workshop, I decided to stick with my Smart Belt idea, as it required its own soft tech custom made sensor. As I already mentioned in the strategy section, the initial idea of creating the whole thing using felting seemed too impractical, so the design was changed to a weaved belt, with a small pompom ball as a soft switch, that would be turned on if the two pieces of the belt were pulled upon.


To start the weaving process, I created a loom out of cardboard to help me do so. I added a conductive thread to the three center lines so that I could later use it to conduct electricity to the pompom. Then I took about 50 rounds of Yarn and started the weaving, One key point was that it was challenging to pass the 50 rounds of yarn through the loom every single row, so I ended up putting all the yarn around a small tube and used that to help me speed up the process. I started by going from the bottom and started going over and below from there. Left a small piece of yarn at the beginning to tie it up after the whole loom is done.


After finishing the whole loom, you cut all the yarn that hold the piece to the loom. to finish the piece, you have to put all the extra yarns at the end into the piece itself. To do that, you insert the needle into the piece, put the extra bit of yarn in the needle and go into the piece itself.


For the final touch, I used conductive thread to mark an X on the spot where the pompom is to be placed. Also added an extra bit of conductive thread to the edge of the product where the rest of the circuit is going to be connected. After finishing both of the pieces, I put them on top of each other and sewed them together.


After finishing with the weaving, I started working on the pompom. I cut the conductive fibre into small pieces and used felting to create the small pressure sensor. Every time I did a layer of conductive fibre, I added a layer of non-conductive material. Throughout the whole process, I had to constantly use of the testing tool to make sure the distribution of the conductive material was well done. I ended up with a pompom that was great in one direction but not in another, so I sewed the pompom on to one of the X marked on the belt so that the direction would stay the same.

mvimg_20190117_141748mvimg_20190117_140823 mvimg_20190117_141749mvimg_20190117_141334

I finally did some testing by pulling the belt and seeing if it would turn the LED on the testing tool on.

Insights: What knowledge did you gain from your prototype/ experiment? Don’t just include successes, your failures along the way are useful insights as well. How could you apply this knowledge?

Weaving takes a lot of time, especially if you require long pieces. Having to pass a long piece of yarn every time through the loom is very difficult, especially when you need to make sure that no knots are being made. I did end up using a small roll of paper as the place holder for the yarn and passed that through the loom. Also, I initially made sure my loom was very flat and straight, but later on realized that the fact that I could fold my loom was very helpful especially when I had to pass the big roll of yarn through every single line. When you get the flow of the process, it gets much faster, but it is very difficult to make sure every line is exactly the same length. If you push the yarns too much if will narrow your piece and makes it more difficult to weave. To make sure every line stays the same size you need to push the yarn only enough to make sure everything is tightened together without ruining the rest fo your loom.

The pressure sensor pompom requires a lot of testing. Even though I did a lot of testing while I was felting, it was still not enough. I only tested the pompom in one direction, so I ended up with a pompom that only worked in direction. I would recommend that you make sure you test the pompom in every direction and that you don’t use long pieces of conductive fibre as that would reduce the quality of the pompom and change it to a simple switch.

Information sources:

I used the Weaving Loom tutorial to create my own cardboard loom.

Next Steps:

After finishing the design, I realized that the pressure sensor conenction was too big, and I wouldn’t use it as belt myself. For my next step, I would try to add the sensor into the belt like the figure below:


I would also make it bigger so that it would actually fit around a person’s waist. I would also add a LED to the belt itself so that it would have an indicator on it to show its status.

Happy Hat

During the ideation process in class, I got 8 suggestions from the pile and out of the eight suggestions, the one that stood out for me was “Happy Hat Skiing”. The reason why I liked this idea was that I enjoyed picturing a happy ski hat, especially when it combines knitting and sewing with technology to get some interesting results. This approach of combining past and future skills and techniques is a personally interesting field for exploration.

My initial sketch of what I envisioned the hat to look like. It shows a hat with LED that lights using a battery.
My initial sketch of what I envisioned the hat to look like. It shows a hat with LED that lights using a battery.



In the beginning, my idea was to create a hat that predicts the wearer’s mood and reflects it through an LED in the “fluff” at the top of hat. However, I am personally not sold on the idea of technology with mood prediction because of the social impacts it would have. So, eventually, I decided to go with a knitted and sewed hat with LED light in the fluff ball and ON/OFF functions rather than mood prediction.

Knitting was very challenging at the beginning and my first 6 or so attempts failed. However, after repeating a few times, I started to understand knitting and it can be used. I considered the option of knitting the conductive thread through with the yarn, but I wasn’t sure where I wanted to place the thread yet and so I decided to sew the conductive thread in the texture once I’m done knitting. I started with two 20-knot batches of knitted textile, not perfect, but enough to create a rough prototype of the hat by sewing the two batches together with normal thread.

Started with a 20 knot black knitted yarn. I still face issues at the first and last knot of each row
Started with a 20 knot black knitted yarn. I still face issues at the first and last knot of each row
Started with a 20 knot black knitted yarn. I still face issues at the first and last knot of each row
Started with a 20 knot black knitted yarn. I still face issues at the first and last knot of each row


I also knitted a 20 knot red yarn for the top part of the hat.
I also knitted a 20 knot red yarn for the top part of the hat.

Then I sewed a conductive thread from the LEDs to the positive and negative lines of the tester, which is sewed to the edge of the hat. When the circuit is closed, it lights the LEDs, which are 2 generic yellow LEDs connected using conductive thread to the battery.

Testing the circuit before closing the loop of the hat
Testing the circuit before closing the loop of the hat
When the circuit is close, 2 LEDs light up, which looks pretty funny on a hat.
When the circuit is close, 2 LEDs light up, which looks pretty funny on a hat.


I still find challenging to work with textiles since it is a new exploration for me and is still hard for me to visualize, especially in the ideation stage. However, this experiment pushed me to explore my prototype through and learn more about knitting. I would also like to explore different types of techniques and material for knitting because I believe knitting can be a surprisingly useful solution depending on how it is used.

Since I did not have the right frame for the circular weaving, I was able to repurpose an old frame by drilling through it and inserting yarn.
Since I did not have the right frame for the circular weaving, I was able to repurpose an old frame by drilling through it and inserting yarn.
I experimented with circular weaving also. I inserted conductive thread thoughout the lines.
I experimented with circular weaving also. I inserted conductive thread thoughout the lines.










Next Steps

For the next step, I would like to find a better way to close the circuit, perhaps using a button or a sensor to light the LED. Also, I would like to focus more on creating a better prototype of the LED fluff ball because it can be used on its own, added to any hat, to light up through a button or an app in the future. An interesting approach to that would be to explore using felting to create fluff ball that lights under a certain temperature or with rain.

If done nicely, the fluff ball can be a nice addition to any ski or winter hat.