Open Project : The SummerTime Purse

DIGF 2016 Open Project- Khushi Jetley : The Summertime Purse


Summer is a fun time of the year. A day out at the beach or the amusement park can be a lot of fun. However dehydration, heat exhaustion and sunburns are few of many problems that individuals can face during the hot summer days. The summertime purse not only acts as a vessel to carry your essentials whilst you enjoy but also will act as a reminder to take care of yourself.


Summertime Purse will act as a means of self care during a busy day. Oftentimes when we are out with other people, amid having fun, we tend to forget to take care of ourselves. Hence, this bag will act as a reminder of taking a sip of water, or putting on sunscreen, or trying to cool down.

The bag is equipped with a temperature sensor, that makes the flowers light up if the temperature is more than 10 degrees Celsuis. When the individuals open the bag the lights on the butterflies and the flowers start blinking, reminding the uses to take a break and put their needs first.


  • Putting the bag together
    • The bag was put together using pattern I found online. (The link is posted below if anyone wants to try).
    • The pattern was simple to follow and very thorough.
    • unnamed-2 unnamed-1  unnamed
  • Circuit
    • The circuit was constructed on a fusible fleece interfacing using conductive thread, conductive fabric and copper tape.
    • The insulation for some intersecting parts was done with tape.
    • img-0958-1img-0940_1_75img-0941_1_3_81 img-0960_80_1_56_1_25
  • Code
    • adafruit-circuit-playground-express-blocks-_-javascript-editor

Final Project Images

img-0949-1 img-0957-1

Parts List

  • Exterior fabric:
    • 1/2 yard fabric (quilt weight or home decor/can- vas)
    • scraps of vinyl for tassel and side connectors
  • Lining fabric:
    • 1/2 yard quilt weight cotton
    • Interfacing:
    • 1/2 yard fusible fleece
    • 2 yards fusible woven interfacing
  • Notions and supplies:
    • (1) 1” rectangle slide
    • (2) 1” swivel clips
    • (2) 1” D-ring or triangle rings
    • (1) 1/2” D-ring (for tassel)
    • (1) 18mm magnetic snap
  • Circuit
    • Copper Tape
    • Conductive Thread
    • Conductive Fabric
    • (11) Red/Orange LEDs
    • (5)Blue LEDs
    • (16) 220 ohms Resistors

Circuit Diagram


Reflections & Next Steps

This project was a really good learning experience. I had no experience with sewing, so this was my first big sewing project. It was very informative as well as frustrating at times.

My project was different from my proposal as I proposed to create a responsive scheme of LEDs that was dependent on the analog input from the sensor. However, the final project was a bit simpler, as it only took a singular output to create the behaviors of the LEDs. In future, I would refine the wiring of the circuit, to make the product more efficient. I would also like to use a better temperature sensor, to make the product more interactive.  I intend to make the bag functional all year round, with more room for the analog input. I would also like to create timed-based specific patches that reminds the user for specific things. With more practice I would also like to make the bag more polished and well-built.


FREE The Sweet Pea Saddle Bag – PDF Sewing Pattern


Exploration Journals 1-4

Exploration Journal 1 –

Adafruit CPX sound and Sound Sensors

I tried playing around with the CPX sounds to see what are the possibilities. I have never worked with CPX or anything similar, hence I thought that exploring the sound aspect of the CPX will help me develop knowledge and skills that would further aid me in this class.

For the first exploration, I toyed around with the ‘play tone’ feature of makeCode to make various sounds. I made a few tunes with the ‘play melody’ function on the makeCode. Finally after some tries I was able to code simple tunes like happy birthday, twinkle twinkle that etc. on the ‘play tone’ function. I incorporated these tunes, with the ‘on button click’ functions. When button A is pressed the CPX plays happy birthday, when button B is pressed the CPX plays Mary had a little lamb and when both buttons A and B are pressed together twinkle twinkle little star is played.

pasted image 0copy.png


For the next exploration, I played around with the sound sensor. In the class we briefly explored the sound sensors, so I was very interested in how they can be maneuvered; therefore, I did some research and I landed on a video where the creator uses sound sensors to blow out the LEDs on the CPX, as if they were candles on a birthday cake. I found it very interesting and I tried to mimic the tutorial but instead of blowing candles/LEDs, I tried to make a clap light. When any loud sound/clap is detected by the sensors on the CPX the LEDs light up. (Links to an external site.)


Exploration Journal 2 – Capacitive Touch: Hand Drawn Circuits

Hello Everyone,

While browsing through numerous tutorials and links about capacitive touch, I landed upon this tutorial.  (Links to an external site.)The artist explores capacitive touch using arduino and a hand drawn circuit. Graphite being a good conductor, powers the circuit and the fan begins to move.

For this exploration I decided to use the aforementioned concept with the CPX, and initiate the capacitive touch to light up the CPX. I used a 6B pencil to draw out the shapes. I realized that the lines have to be really thick and in layers, and vertical strokes of the pencil allow for better conductivity. The graphite is a really good substitute for the expensive conductive paint and is a great way to create interactive art on a budget.

pasted image 0 (1).png

Exploration Journal 3 – Thermometer Using CPX

For the third exploration, I wanted to try out the sensors on the Circuit Playground as that is something I would like to use in my final project. CPX is a great tool for trying out various inputs as it comes built-in with many different sensors. I was very intrigued by a few tutorials online revolving around temperature and thermal sensing.

I followed the following tutorial to create a thermometer for my room using the CPX. (Links to an external site.)




pasted image 0-1.png


The thermometer worked very well. My room was very cold at the time of the test hence I received a more analog result. The LEDs on the CPX lit up forming a gradient with shades of blue. As I hovered my finger over the temperature sensor of the Circuit Playground, the heat from my fingers caused the LEDs to light up warmer tones like orange, yellow.

I did a few modifications and the CPX gave me a digital result. When close to the heat the LEDs were red and on moving closer to an open window, the CPX lit up in blue.


I intend to use this sensor in my final project. I really like the nature of the inputs, as it provides both analog and digital output if coded adequately. Additionally, the temperature sensor can be used with the capacitive touch and can be used to create a well-functioning thermometer for anything.

Exploration Journals 4 – Technique Exploration: Stitching

Last Journal Entry!

I have zero experience with textiles, and stitching. This semester I have really struggled with putting fabrics together and making them into functional objects. So for the final exploration, I decided to explore stitching techniques, which will help me not only in the final project but also in future. I have learned that basic stitching is a important life skill and everyone should know how to do it. Professor Prior directed me to this website: (Links to an external site.).

This website presents 5 stitches that are very important and relatively easy to master. The stitches explored Cross-stitch, whip stitch, running stitch, back stitch and ladder stitch.

Cross Stitch

Cross Stitch is typically used in embroidery and embellishments. It can also be used in putting 2 fabrics together, and leave a nice cross pattern to the joint.

I followed this tutorial: (Links to an external site.)


IMG-0883.jpg       IMG-0878.jpg

Whip Stitch    

Whip Stitches are often used to bind 2 fabrics together, hemming edges, and crochet. I referred to the following link: (Links to an external site.)



Running Stitch

Running Stitches are typically used in tailoring, and sewing basic seams, and it also may come in handy while doing patchwork. The tutorial I followed: (Links to an external site.)


IMG-0884.jpg      IMG-0876.jpg

Ladder Stitch

Ladder Stitch is also known as invisible stitch and can be used to sew/complete a project with an open seam for stuffing or turning. It is often used in pillows, stuffed toys and/or lined hems. The tutorial I followed was: (Links to an external site.)



Back Stitch

Back Stitches are often used in embroidery, typically to outline the sketch. It is also a very strong way to attach 2 fabrics together. The tutorial I referred to is as follows: (Links to an external site.)


IMG-0870.jpg  IMG-0875.jpg


These stitches were very easy and helpful. I hope to use them in my final project and later in life. Overall I think that these techniques are very beginner friendly and are a great way to grasp knowledge and explore materials and textiles.

Assignment 2: Expressive Wearable Khushi Jetley


The wearable that I have created is called showUP. This device is for individuals that suffer from anxiety. The wearable has 2 different modes that show how the person wearing is feeling. As someone who has struggles with anxiety, I know that sometimes it is hard to express yourself when feeling anxious. ShowUP, helps the individuals express anxiety to those around them, without having to tell them physically.

When the person is happy/calm, they can turn on the yellow light by just doing the blue snap fastener. However if the person is feeling anxious, they can do the pink snap fastener and the bracelet will glow in purple colour.


ShowUP, will help anxiety patients get the help that they need. Most of the time, anxiety is ignored as people label it as overthinking, overstressing, nervousness etc. Through this wearable device, not only I intend to make people aware of anxiety disorder and its consequences, but also help normalise the stigma around it.


Idea: This idea started out as an anklet speed tracker. However, I realized that the requirements of the assignments need for the device to be able to express a feeling/emotion. Hence, I thought that I would like to express what I feel a lot, anxiety.

Initial Sketches: I had decided that I wanted to create an accessory for my wearable. I was debating between bracelets, belts and earrings. Bracelet was the best choice for my intended purpose, expressing the state of mind.

After deciding what I wanted to create, the next part was how I am going to make a bracelet that looks fashionable and  job. I mapped out the circuit and the flow and made some sketches of how the final product would look like.

img-0292 img-0291

Circuit: Once I mapped the circuit, I played around with the makecode and tried to make the CPX function as per my needs using alligator clips. After few tries the functionality of the device was perfect.

Designing the Device: Designing and maneuvering the circuit was fairly easy as compared to designing the exterior of the device. I had never worked with texttiles and hence I was a little hard to wrap my head around it and get used to it.



Final Project



Overall I am happy with the outcome of my project. If I were redo it I would make the bracelet a little smaller, and more aesthetically appealing. Additionally, I would like to practice a bit more with the sewing and textiles in general, as I believe, due to inadequacy, I did put too much time in figuring things out.

Additionally, I would like to introduce the showUP, device in various different forms like earrings, necklace, etc. Also, I would like for the product to have various settings indicating levels of anxiety/serenity.


60’S inspired color Changing “Mood” Bracelets. (n.d.). Retrieved February 12, 2021, from

How mood rings work. (n.d.). Retrieved February 12, 2021, from

Assignment 1: Speculative Wearable_ Khushi Jetley


The wearable I have designed is a therapeutic eye mask. This eye mask is targeted at individuals suffering from sleeping disorders, brain injury, depression, anxiety and various other psychological conditions. The eye mask is equipped with several sensors that measure and assess brain activity. The eye mask is attached to headphones that play sounds or music that will allow the brain to become relaxed and comfortable, hence helping the individual go to sleep. The music played in the headphones is therapeutic music that allows to create a balance in the waves of the brain. The wearable activates as soon as it is placed on the individual’s eyes. The EEG sensors map brain activity, which can be tracked on a phone app. The app further organizes the data and allows individuals to see their progress. The eye mask will be made up of silk fabric, which is very soft and very gentle on the skin. Additionally, the sensors and headphones can be removed from the mask for easy washing. The eye mask will be available in a few different colors and sizes, including those for children.


Neuro imbalance in the brain causes conditions like ADHD, anxiety, depression; sometimes this imbalance is induced/triggered by the means of injury or drug use, whereas other times it may occur naturally. Coping with these conditions can be very hard as it affects focus, sleep, thinking, therefore, adversely affecting the social and professional life of the individuals. The therapeutic eye mask acts as a non-invasive treatment option that helps individuals improve their mental health. The eye mask uses the concepts of neurofeedback therapy and music therapy, which helps the brain come to a balanced state. Although primarily used for sleep, this eye mask can be used in relaxation, mindfulness or meditation throughout the day. Individuals can also use the eye mask to boost concentration, mood, focus and brain performance, regardless of the state of their mental health. 

This design caters to the need of the user by using the EEG sensors. The EEG sensors sense and evaluate the state of mind and play the music that will be suitable for the users condition. Hence, this design is one of its kind in the market as there are not many products that caters to the needs of each user and provides them a unique and therapeutic experience.

Diagrams and Paper Prototype


Material Mood Board

Silk Fabric

Head Phones 




Some links for neurofeedback therapy are as follows:

Centers, B. (2019, September 18). Everything You Need to Know About Neurofeedback Therapy. Retrieved January 19, 2021, from,your%20brain%20waves%20%E2%80%93%20through%20conditioning.

EEG & Biofeedback Research from Muse. (2020, December 18). Retrieved January 19, 2021, from